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The QSD as an eigenvalue problem

We want to find the QSD v,

—Av. = \.ve in Q.
Opv: =0 on 'y
ve=20 on I'p,

But thanks to [3]:

Flat angle between '}, and NFB’,: Onve € L2(09)
90° angle between Iy, and I, : d,ve € L2(09)
We need to be able to do integration by parts to
get the exit hole distribution X;

[3] Jakab, Mitrea and Mitrea, Indiana University Mathematics Journal, (2009)
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Why modifying the domain?

We want to find the QSD v,

—Av. = A ve in
Onv: =0 on Iy

Ve = on I'p,

But thanks to [3]:
Flat angle between 'y and I'},: Oy ¢ L2(09)
90° angle between Iy, and I} : Onve € [2(09)

We need to be able to do integration by parts to
get the exit hole distribution X;

Level curves of the solution v, near
a flat hole.

[3] Jakab, Mitrea and Mitrea, Indiana University Mathematics Journal, (2009)
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Similar eigenvalue problem:

—Av, = Ve in S~25
O =0 on [y (1)

v: =0 on I'p,

N holes of radius rg(i)centered at x() € 9Q

Domain Q. = Q\UM , B(x(1), fa(i))

. New holes: Ff)l_ = 9B(x\, ragi)) na



A more regular narrow escape problem

Similar eigenvalue problem:

—Av. = A\.Us in §~25
Opve =0 on Iy

ve =0 on I'p,

3

Previous work: Asymptotic scaling for the disk
and the ball [4]

My PhD work: Asymptotic scaling for general
domains in d > 2 dimensions

[4] Lelievre, Rachid and Stoltz, preprint (2024)
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What does the quasi-stationary distribution look like?

o 0113 0225 0338 0451 DE 0676 0789 0902 101 113
N S
QsD
0 00891 0138 0207 0276 0345 0414 0483 0552 0622 0691
L B ]
Dimension 2: Circle Dimension 3: Cube
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How to build the quasimode? (N = 1)

From the experiments, v, is almost

nstant far from the hole: . .
constant far from the hole We can approximate the solution v, by a

quasimode, for 1 hole i:
e =1+ KIf;

with f; such that:

{—Af,- =Cy in Q 2

Onf; =0 on 9Q\{x"}

with x(7) the center of the hole and Cq>0
Then,

i i
0 00881 0138 0207 0278 S;E 0414 0483 0552 0622 0691 _A(Ps = CdKE = Cngsos + O( . )
— C —
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Singularity expansion of a point charge at the boundary

Lemma
There exists (f;, C4) such that:

fi is solution of (2) in Q
sing supp f; = {x(1}
f, € C® (ﬁe)

fi(x) = — (rg(")>2_d (1 +0 (rg(’.)» uniformly in x € T,
in the limit e — 0

The proof will be carried out in d > 3, in 3 steps
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Proof of the lemma on f: step 1/3

From the compatibility condition:

0.fi = | Afi=—cilg)
(2,9} Q
The distribution f formally satisfies:

—Afi=Cy in Q
f)nf,- = _Cd‘Q|5X(i) on 09

= Neumann’'s Green function with the singularity pushed to the boundary
The Narrow escape problem has been related to f; before in the literature [5]

[5] Silbergleit, Mandel and Nemenman (link with electrostatics)
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Proof of the lemma on f: step 2/3
Fundamental solution of the laplacian , I': x — — |x|>™¢ satisfies:
~Al=0 in RT x RY1,

., =0  ond (R+ X Rd_l) \{o},

Consider the change of variables W;: QN B(x(),§) — R x R~ that flattens locally the
domain, with W,‘(X(i)) =0, such that

Op(ToW;)) =8, =0, for x € QN B(x,§)\{xN}

As Vi(x) = x — x4+ o (X — x(i)), by Taylor expansion:

_ ) = — x(
A(ToV)) O(’x X 1

1-d d
) € LP(Q), forp< ——
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Proof of the lemma on f: step 3/3

The solution f; is built as:
fi=ToW;+5,

with S; € W1 chosen such that f; verifies the original PDE (2):
—AS,':A(FO\U,')—FC(] in Q
OnSi = —N on 09
where N = 9, (T o ¥;) and N(x()) =0

The value of C4 determined by compatibility on (4)

Using the integral representation of S; (layer potential techniques [6]), we have that
Si(x) = O(]x — x| (x — x(0)), in the limit x — x()

[6] Ammari, Kang and Lee, American Mathematical Society, (2009)

louis.carillo@enpc.fr 11 of 21



This construction can be extended to /N holes of radius ra(i), taking:

N N
e =1+ Kif, andK.=)» Kl
=1 =1

Then for x € I'ED'_:

pel) =1 K (A0) " 0 (K (1)) + X KA

For (< to be close to 0 on F‘sl_, we take




Results

Theorem (Operator) 1.2 from [4]
The operator L. associated to (1) is non-negative, self-ajoint, has a compact resolvent
Jc > 0,3e0 > 0,Ve € (0,0), dimRanmy x (L) =1

Theorem (Eigenvalue)

re = (Eln]) = CdEN: ()" (1 wo <§N: rg(i)))

i=1 i=1

Theorem (Exit hole distribution)

N\ d—2
(49) v
P(Xr €)= —— "~ +0 (Z ré”)
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Results in any dimension d > 2

K = <rg(")>d_2 ford >2, K= —log (r(i)>_1 ford =2

Theorem (Eigenvalue)

O(K."?) ford >3
A= (B[R]) = GKe+ 4 o(K log(K)), for d =
O(Ks2)7 for d =
Theorem (Exit hole distribution)
__d-1
Ki O(K-"7?) for d > 3
P(X: €Th,) = % + 9 O(K- log(KZ)), ford =3
E PR
O(K€)7 for d = 2
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Measure of the exit time through Finite Element Method (FEM)

————— Sphere r=1
————— Sphere r=2
----- Square
100 ----- Cylinder
=g
P
1071 e e
e

Ae

1072
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Ke

107!

The constant Cy is given by:

max{d — 2, 1} |%(0,1)|
2 Q]

Cqg =

In dimension 3 we find for the simple
shapes through FEM:

Shape G Cs (simu)
Sphere radius 1 | 1.500 | 1.46 +0.02
Sphere radius 2 | 0.187 | 0.18 +0.01

Cube 6.282 | 6.28 +0.02

Cylinder 8.000 | 8.06 £0.01
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Measure of the exit time in higher dimension

,,,,, 2D: A = 3.76 K" 0.99
rrrrr 3D: Ac = 5.25 K™ 0.95
,,,,, 4D: A = 2029K," 0.92

Ae

107!

————— 5D: A = 39.76K.~ 0.92

Monte Carlo simulation of the exit
time 7. for a unit ball in dimension

{2, 3, 4, 5}

It's a rare event so very long
simulations...

Correct scaling in K., but:
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Ke

10~

Dimension | C2aT | CBal (simu)
2 2 3+1
3 4.5 543
4 16 20+2
5 32.5 39+3
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Importance of the initial condition

The previous simulations where done with the inital condition Xg ~ g # v- .
Fleming—Viot algorithm — estimate the QSD on the fly using the Yaglom limit

Test: the unit sphere in dimension 3, fit of A\, = C3Ka:

louis.carillo@enpc.fr

Initialisation | v, do yfv
G 4 543 3.7+0.6
Q@ 1 /0954+0.08 | 1.0£0.1
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Numerical results on the exit hole distribution

Obtained through Monte-Carlo simulations, average over 10* simulations and several
values of ¢: _ o _
Unit sphere in dimension 4

Unit sphere in dimension 3 4 holes of radius €, 0.7¢, 0.8¢, 0.9¢.

Estimate of P(X, € %
2 holes of radius ¢ = 0.5¢. stimate of P(X; € D,-)

Estimate of P(X; € %)) Hole

Theorem | Monte-Carlo
1 0.284 0.334+0.02
By the theorem: % + O(¢) 2 0.205 0.17 £ 0.02
By the simulation: 0.665 =+ 0.001 3 0.235 0.22 +0.02
4

0.264 0.27 £0.02
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Proof of the results on the Eigenvalue

By the Green identity, we can write:

A — A%(@E’ U(E)> o <906’ _Au(g)> o <_A90€v u(€)> — <90€va"u(€)>r6 + <8n30€7 u((§>r6

07 (etug) T (etug) (0%, ug)
<_A90€v u(E)> - <90€7 anUS>FED
(¢°, ug)

1

By injecting all we know about the quasimode.

This sums up to being able to estimate the L' norm of the quasimode ug and its normal

derivative
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© The QSD is a useful tool to study the narrow escape problem
¢ With this approach we can solve it for any (locally) smooth domain in any dimension

© We get the scaling of the escape time and the exit hole distribution

Future work: How does the shape of the hole influence the escape time? — the slit




The slit

QD (ronnormalised)
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