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The QSD as an eigenvalue problem

We want to find the QSD νε
−∆νε = λενε in Ωε

∂nνε = 0 on ΓεN

νε = 0 on ΓεDi

But thanks to [3]:

Flat angle between ΓεN and ΓεDi
: ∂nνε ̸∈ L2(∂Ω)

90◦ angle between ΓεN and Γ̃εDi
: ∂nνε ∈ L2(∂Ω)

We need to be able to do integration by parts to
get the exit hole distribution Xτ

[3] Jakab, Mitrea and Mitrea, Indiana University Mathematics Journal, (2009)
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Why modifying the domain?

We want to find the QSD νε
−∆νε = λενε in Ωε

∂nνε = 0 on ΓεN

νε = 0 on ΓεDi

But thanks to [3]:

Flat angle between ΓεN and ΓεDi
: ∂nνε ̸∈ L2(∂Ω)

90◦ angle between ΓεN and Γ̃εDi
: ∂nνε ∈ L2(∂Ω)

We need to be able to do integration by parts to
get the exit hole distribution Xτ

Figure: Level curves of the solution νε near
a flat hole.

[3] Jakab, Mitrea and Mitrea, Indiana University Mathematics Journal, (2009)
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A more regular narrow escape problem

Similar eigenvalue problem:
−∆νε = λενε in Ω̃ε

∂nνε = 0 on ΓεN

νε = 0 on Γ̃εDi

(1)

N holes of radius r
(i)
ε centered at x (i) ∈ ∂Ω

Domain Ω̃ε = Ω\∪N
i=1B(x

(i), r
(i)
ε )

New holes: Γ̃εDi
= ∂B(x (i), r

(i)
ε ) ∩ Ω
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A more regular narrow escape problem

Similar eigenvalue problem:
−∆νε = λενε in Ω̃ε

∂nνε = 0 on ΓεN

νε = 0 on Γ̃εDi

Previous work: Asymptotic scaling for the disk
and the ball [4]

My PhD work: Asymptotic scaling for general
domains in d ≥ 2 dimensions

[4] Lelièvre, Rachid and Stoltz, preprint (2024)
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What does the quasi-stationary distribution look like?

Figure: Dimension 2: Circle Figure: Dimension 3: Cube
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How to build the quasimode? (N = 1)

From the experiments, νε is almost
constant far from the hole:

We can approximate the solution νε by a
quasimode, for 1 hole i :

φε = 1 + K i
εfi

with fi such that:{
−∆fi = Cd in Ω

∂nfi = 0 on ∂Ω\{x (i)}
(2)

with x (i) the center of the hole and Cd > 0

Then,

−∆φε = CdK
i
ε = CdK

i
εφε + O(. . . )
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Singularity expansion of a point charge at the boundary

Lemma

There exists (fi ,Cd) such that:

• fi is solution of (2) in Ω

• sing supp fi = {x (i)}
• fi ∈ C∞

(
Ω̃ε

)
• fi (x) = −

(
r (i)ε

)2−d (
1 + O

(
r (i)ε

))
uniformly in x ∈ Γ̃εD

in the limit ε → 0

The proof will be carried out in d > 3, in 3 steps
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Proof of the lemma on f : step 1/3

From the compatibility condition:∫
∂Ω

∂nfi =

∫
Ω
∆fi = −Cd |Ω|

The distribution f formally satisfies:{
−∆fi = Cd in Ω

∂nfi = −Cd |Ω|δx(i) on ∂Ω
(3)

⇒ Neumann’s Green function with the singularity pushed to the boundary
The Narrow escape problem has been related to fi before in the literature [5]

[5] Silbergleit, Mandel and Nemenman (link with electrostatics)
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Proof of the lemma on f : step 2/3

Fundamental solution of the laplacian , Γ : x 7→ − |x |2−d satisfies:−∆Γ = 0 in R+ × Rd−1,

∂nΓ = 0 on ∂
(
R+ × Rd−1

)
\{0},

Consider the change of variables Ψi : Ω∩B(x (i), δ) → R+ ×Rd−1 that flattens locally the
domain, with Ψi (x

(i)) = 0, such that

∂n (Γ ◦Ψi ) = ∂nΓ = 0, for x ∈ ∂Ω ∩ B(x (i), δ)\{x (i)}

As Ψi (x) = x − x (i) + o
(
x − x (i)

)
, by Taylor expansion:

−∆(Γ ◦Ψi ) = O

(∣∣∣x − x (i)
∣∣∣1−d

)
∈ Lp(Ω), for p <

d

d − 1
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Proof of the lemma on f : step 3/3

The solution fi is built as:
fi = Γ ◦Ψi + Si ,

with Si ∈ W 1,p chosen such that fi verifies the original PDE (2):{
−∆Si = ∆(Γ ◦Ψi ) + Cd in Ω

∂nSi = −N on ∂Ω
(4)

where N = ∂n (Γ ◦Ψi ) and N(x (i)) = 0

• The value of Cd determined by compatibility on (4)

• Using the integral representation of Si (layer potential techniques [6]), we have that
Si (x) = O(|x − x (i)|Γ(x − x (i))), in the limit x → x (i)

[6] Ammari, Kang and Lee, American Mathematical Society, (2009)
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Behaviour of the quasimode near the hole

This construction can be extended to N holes of radius r
(i)
ε , taking:

φε = 1 +
N∑
i=1

K i
εfi , and Kε =

N∑
i=1

K i
ε

Then for x ∈ Γ̃εDi
:

φε(x) = 1− K i
ε

(
r (i)ε

)2−d
+ O

(
K i
ε

(
r (i)ε

)3−d
)
+
∑
j ̸=i

K j
εfj(x)

Scaling of K i
ε

For φε to be close to 0 on Γ̃εDi
, we take

K i
ε =

(
r (i)ε

)d−2

louis.carillo@enpc.fr 12 of 21



Results

Theorem (Operator) 1.2 from [4]

The operator Lε associated to (1) is non-negative, self-ajoint, has a compact resolvent

∃c > 0,∃ε0 > 0, ∀ε ∈ (0, ε0), dimRanπ[0,cKε]
(Lε) = 1

Theorem (Eigenvalue)

λε =
(
E[τε]

)−1
= Cd

N∑
i=1

(
r (i)ε

)d−2
(
1 + O

(
N∑
i=1

r (i)ε

))

Theorem (Exit hole distribution)

P(Xτ ∈ ΓεDi
) =

(
r
(i)
ε

)d−2

∑N
i=1

(
r
(i)
ε

)d−2
+ O

(
N∑
i=1

r (i)ε

)
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Results in any dimension d ≥ 2

K i
ε =

(
r (i)ε

)d−2
for d > 2, K i

ε = − log
(
r (i)ε

)−1
for d = 2

Theorem (Eigenvalue)

λε =
(
E[τε]

)−1
= CdKε +


O(Kε

d−1
d−2 ) for d > 3

O(Kε
2
log(Kε)), for d = 3

O(Kε
2
), for d = 2

Theorem (Exit hole distribution)

P(Xτ ∈ ΓεDi
) =

K i
ε

Kε

+


O(Kε

d−1
d−2 ) for d > 3

O(Kε log(Kε)), for d = 3

O(Kε), for d = 2
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Measure of the exit time through Finite Element Method (FEM)

The constant Cd is given by:

Cd =
max{d − 2, 1}

2

|C (0, 1)|
|Ω|

In dimension 3 we find for the simple
shapes through FEM:

Shape C3 C3 (simu)

Sphere radius 1 1.500 1.46± 0.02

Sphere radius 2 0.187 0.18± 0.01

Cube 6.282 6.28± 0.02

Cylinder 8.000 8.06± 0.01
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Measure of the exit time in higher dimension

• Monte Carlo simulation of the exit
time τε for a unit ball in dimension
{2, 3, 4, 5}

• It’s a rare event so very long
simulations...

• Correct scaling in Kε, but:

Dimension Cball
d Cball

d (simu)

2 2 3± 1

3 4.5 5± 3

4 16 20± 2

5 32.5 39± 3
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Importance of the initial condition

The previous simulations where done with the inital condition X0 ∼ δ0 ̸= νε .
Fleming–Viot algorithm → estimate the QSD on the fly using the Yaglom limit

Test: the unit sphere in dimension 3, fit of λε = C3Kε
α
:

Initialisation νε δ0 νFVε

C3 4 5± 3 3.7± 0.6

α 1 0.95± 0.08 1.0± 0.1
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Numerical results on the exit hole distribution

Obtained through Monte-Carlo simulations, average over 104 simulations and several
values of ε:

Unit sphere in dimension 3

• 2 holes of radius ε = 0.5ε.

• Estimate of P(Xτ ∈ ΓεD2
)

By the theorem: 2
3 + O(ε)

By the simulation: 0.665± 0.001

Unit sphere in dimension 4

• 4 holes of radius ε, 0.7 ε, 0.8 ε, 0.9 ε.

• Estimate of P(Xτ ∈ ΓεDi
)

Hole Theorem Monte-Carlo

1 0.284 0.33± 0.02

2 0.205 0.17± 0.02

3 0.235 0.22± 0.02

4 0.264 0.27± 0.02
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Proof of the results on the Eigenvalue

By the Green identity, we can write:

λε
0 =

λε
0⟨φε, uε0⟩
⟨φε, uε0⟩

=
⟨φε,−∆uε0⟩
⟨φε, uε0⟩

=
⟨−∆φε, uε0⟩ − ⟨φε, ∂nu

ε
0⟩Γε + ⟨∂nφε, uε0⟩Γε

⟨φε, uε0⟩

=
⟨−∆φε, uε0⟩ − ⟨φε, ∂nu

ε
0⟩ΓεD

⟨φε, uε0⟩

=
⟨CdKε, u

ε
0⟩ − ⟨O(Kε

1
n−2 ), ∂nu

ε
0⟩ΓεD

⟨1 + O(Kε), uε0⟩

By injecting all we know about the quasimode.
This sums up to being able to estimate the L1 norm of the quasimode u0 and its normal
derivative
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Conclusion

• The QSD is a useful tool to study the narrow escape problem

• With this approach we can solve it for any (locally) smooth domain in any dimension

• We get the scaling of the escape time and the exit hole distribution

Future work: How does the shape of the hole influence the escape time? → the slit
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The slit
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