

A quasi-stationary approach to the narrow escape problem

Louis Carillo

PhD under the supervision of Tony Lelièvre, Urbain Vaes & Gabriel Stoltz

The QSD as an eigenvalue problem

We want to find the QSD ν_{ε}

$$\begin{cases} -\Delta\nu_{\varepsilon} = \lambda_{\varepsilon}\nu_{\varepsilon} & \text{ in } \Omega_{\varepsilon} \\ \partial_{n}\nu_{\varepsilon} = 0 & \text{ on } \Gamma_{N}^{\varepsilon} \\ \nu_{\varepsilon} = 0 & \text{ on } \Gamma_{D_{i}}^{\varepsilon} \end{cases}$$

But thanks to [3]: Flat angle between Γ_N^{ε} and $\Gamma_{D_i}^{\varepsilon}$: $\partial_n \nu_{\varepsilon} \notin L^2(\partial \Omega)$ 90° angle between Γ_N^{ε} and $\widetilde{\Gamma}_{D_i}^{\varepsilon}$: $\partial_n \nu_{\varepsilon} \in L^2(\partial \Omega)$ We need to be able to do integration by parts to get the exit hole distribution X_{τ}

[3] Jakab, Mitrea and Mitrea, Indiana University Mathematics Journal, (2009)

Why modifying the domain?

We want to find the QSD u_{ε}

$$\begin{cases} -\Delta\nu_{\varepsilon} = \lambda_{\varepsilon}\nu_{\varepsilon} & \text{ in } \Omega_{\varepsilon} \\ \partial_{n}\nu_{\varepsilon} = 0 & \text{ on } \Gamma_{N}^{\varepsilon} \\ \nu_{\varepsilon} = 0 & \text{ on } \Gamma_{D_{i}}^{\varepsilon} \end{cases}$$

But thanks to [3]:

Flat angle between Γ_N^{ε} and $\Gamma_{D_i}^{\varepsilon}$: $\partial_n \nu_{\varepsilon} \notin L^2(\partial \Omega)$ 90° angle between Γ_N^{ε} and $\widetilde{\Gamma}_{D_i}^{\varepsilon}$: $\partial_n \nu_{\varepsilon} \in L^2(\partial \Omega)$ We need to be able to do integration by parts to get the exit hole distribution X_{τ}

Figure: Level curves of the solution ν_{ε} near a flat hole.

[3] Jakab, Mitrea and Mitrea, Indiana University Mathematics Journal, (2009)

A more regular narrow escape problem

Similar eigenvalue problem:

$$\begin{cases} -\Delta\nu_{\varepsilon} = \lambda_{\varepsilon}\nu_{\varepsilon} & \text{ in } \widetilde{\Omega}_{\varepsilon} \\ \partial_{n}\nu_{\varepsilon} = 0 & \text{ on } \Gamma_{N}^{\varepsilon} \\ \nu_{\varepsilon} = 0 & \text{ on } \widetilde{\Gamma}_{D_{i}}^{\varepsilon} \end{cases}$$
(1)

N holes of radius $r_{\varepsilon}^{(i)}$ centered at $x^{(i)} \in \partial \Omega$

Domain $\widetilde{\Omega}_{\varepsilon} = \Omega \setminus \overline{\bigcup_{i=1}^{N} B(x^{(i)}, r_{\varepsilon}^{(i)})}$ New holes: $\widetilde{\Gamma}_{D_{i}}^{\varepsilon} = \partial B(x^{(i)}, r_{\varepsilon}^{(i)}) \cap \overline{\Omega}$

Similar eigenvalue problem:

$$\begin{cases} -\Delta\nu_{\varepsilon} = \lambda_{\varepsilon}\nu_{\varepsilon} & \text{ in } \widetilde{\Omega}_{\varepsilon} \\ \partial_{n}\nu_{\varepsilon} = 0 & \text{ on } \Gamma_{N}^{\varepsilon} \\ \nu_{\varepsilon} = 0 & \text{ on } \widetilde{\Gamma}_{D_{i}}^{\varepsilon} \end{cases}$$

Previous work: Asymptotic scaling for the disk and the ball [4]

My PhD work: Asymptotic scaling for general domains in $d \ge 2$ dimensions

[4] Lelièvre, Rachid and Stoltz, preprint (2024)

What does the quasi-stationary distribution look like?

Figure: Dimension 3: Cube

How to build the quasimode? (N = 1)

From the experiments, ν_{ε} is almost constant far from the hole:

We can approximate the solution ν_{ε} by a quasimode, for 1 hole *i*:

$$arphi_arepsilon = \mathbf{1} + oldsymbol{K}^i_arepsilon oldsymbol{f}_arepsilon$$

with f_i such that:

$$\begin{cases} -\Delta f_i = C_d & \text{in } \Omega\\ \partial_n f_i = 0 & \text{on } \partial \Omega \setminus \{x^{(i)}\} \end{cases}$$
(2)

with $x^{(i)}$ the center of the hole and $C_d > 0$ Then,

$$-\Delta\varphi_{\varepsilon} = C_d K^i_{\varepsilon} = C_d K^i_{\varepsilon} \varphi_{\varepsilon} + O(\dots)$$

Singularity expansion of a point charge at the boundary

Lemma

There exists (f_i, C_d) such that:

- f_i is solution of (2) in Ω
- sing supp $f_i = \{x^{(i)}\}$

•
$$f_i \in C^{\infty}\left(\widetilde{\Omega}_{arepsilon}
ight)$$

•
$$f_i(x) = -\left(r_{\varepsilon}^{(i)}\right)^{2-d} \left(1 + O\left(r_{\varepsilon}^{(i)}\right)\right)$$
 uniformly in $x \in \widetilde{\Gamma}_D^{\varepsilon}$

in the limit $\varepsilon \to 0$

The proof will be carried out in d > 3, in 3 steps

Proof of the lemma on f: step 1/3

From the compatibility condition:

$$\int_{\partial\Omega} \partial_n f_i = \int_{\Omega} \Delta f_i = -C_d |\Omega|$$

The distribution *f* formally satisfies:

$$\begin{cases} -\Delta f_i = C_d & \text{in } \Omega\\ \partial_n f_i = -C_d |\Omega| \delta_{\chi^{(i)}} & \text{on } \partial\Omega \end{cases}$$
(3)

 \Rightarrow Neumann's Green function with the singularity pushed to the boundary The Narrow escape problem has been related to f_i before in the literature [5]

[5] Silbergleit, Mandel and Nemenman (link with electrostatics)

Proof of the lemma on f: step 2/3

Fundamental solution of the laplacian , $\Gamma: x \mapsto -|x|^{2-d}$ satisfies:

$$\begin{cases} -\Delta \Gamma = 0 & \text{ in } \mathbb{R}^+ \times \mathbb{R}^{d-1}, \\ \partial_n \Gamma = 0 & \text{ on } \partial \left(\mathbb{R}^+ \times \mathbb{R}^{d-1} \right) \setminus \{0\}, \end{cases}$$

Consider the change of variables $\Psi_i \colon \Omega \cap B(x^{(i)}, \delta) \to \mathbb{R}^+ \times \mathbb{R}^{d-1}$ that flattens locally the domain, with $\Psi_i(x^{(i)}) = 0$, such that

$$\partial_n \left(\Gamma \circ \Psi_i \right) = \partial_n \Gamma = 0, \text{ for } x \in \partial \Omega \cap B(x^{(i)}, \delta) \setminus \{x^{(i)}\}$$

As $\Psi_i(x) = x - x^{(i)} + o(x - x^{(i)})$, by Taylor expansion:

$$-\Delta\left(\mathsf{\Gamma}\circ\Psi_{i}
ight)=O\left(\left|x-x^{(i)}
ight|^{1-d}
ight)\in L^{p}(\Omega), \hspace{1em} ext{for} \hspace{1em} p<rac{d}{d-1}$$

The solution f_i is built as:

$$\mathbf{f}_i = \mathbf{\Gamma} \circ \mathbf{\Psi}_i + \mathbf{S}_i,$$

with $S_i \in W^{1,p}$ chosen such that f_i verifies the original PDE (2):

$$\left\{ egin{array}{ll} -\Delta S_i = \Delta \left(\Gamma \circ \Psi_i
ight) + C_d & ext{ in } \Omega \ \partial_n S_i = -N & ext{ on } \partial \Omega \end{array}
ight.$$

where $N = \partial_n (\Gamma \circ \Psi_i)$ and $N(x^{(i)}) = 0$

- The value of C_d determined by compatibility on (4)
- Using the integral representation of S_i (layer potential techniques [6]), we have that $S_i(x) = O(|x x^{(i)}|\Gamma(x x^{(i)}))$, in the limit $x \to x^{(i)}$

[6] Ammari, Kang and Lee, American Mathematical Society, (2009)

(4)

Behaviour of the quasimode near the hole

This construction can be extended to N holes of radius $r_{\varepsilon}^{(i)}$, taking:

$$arphi_arepsilon = 1 + \sum_{i=1}^N \mathcal{K}^i_arepsilon f_i, \qquad ext{ and } \overline{\mathcal{K}_arepsilon} = \sum_{i=1}^N \mathcal{K}^i_arepsilon$$

Then for $x \in \widetilde{\Gamma}_{D_i}^{\varepsilon}$:

$$arphi_arepsilon(x) = 1 - \mathcal{K}^i_arepsilon\left(r^{(i)}_arepsilon
ight)^{2-d} + O\left(\mathcal{K}^i_arepsilon\left(r^{(i)}_arepsilon
ight)^{3-d}
ight) + \sum_{j
eq i}\mathcal{K}^j_arepsilon f_j(x)$$

Scaling of K_{ε}^{i}

For φ_{ε} to be close to 0 on $\widetilde{\Gamma}_{D_i}^{\varepsilon}$, we take

$$K_{\varepsilon}^{i} = \left(r_{\varepsilon}^{(i)}\right)^{d-2}$$

Results

Theorem (Operator) 1.2 from [4]

The operator $\mathcal{L}_{\varepsilon}$ associated to (1) is non-negative, self-ajoint, has a compact resolvent $\exists c > 0, \exists \varepsilon_0 > 0, \forall \varepsilon \in (0, \varepsilon_0), \ \dim \operatorname{Ran} \pi_{[0, c\overline{K}_{\varepsilon}]}(\mathcal{L}_{\varepsilon}) = 1$

Theorem (Eigenvalue)

$$\lambda_{\varepsilon} = \left(\mathbb{E}[\tau_{\varepsilon}]\right)^{-1} = C_d \sum_{i=1}^{N} \left(r_{\varepsilon}^{(i)}\right)^{d-2} \left(1 + O\left(\sum_{i=1}^{N} r_{\varepsilon}^{(i)}\right)\right)$$

Theorem (Exit hole distribution)

$$P(X_{\tau} \in \Gamma_{D_i}^{\varepsilon}) = \frac{\left(r_{\varepsilon}^{(i)}\right)^{d-2}}{\sum_{i=1}^{N} \left(r_{\varepsilon}^{(i)}\right)^{d-2}} + O\left(\sum_{i=1}^{N} r_{\varepsilon}^{(i)}\right)$$

Results in any dimension $d \ge 2$

$$K_{\varepsilon}^{i} = \left(r_{\varepsilon}^{(i)}
ight)^{d-2}$$
 for $d > 2$, $K_{\varepsilon}^{i} = -\log\left(r_{\varepsilon}^{(i)}
ight)^{-1}$ for $d = 2$

Theorem (Eigenvalue)

$$\lambda_{\varepsilon} = \left(\mathbb{E}[\tau_{\varepsilon}]\right)^{-1} = C_d \overline{K_{\varepsilon}} + \begin{cases} O(\overline{K_{\varepsilon}}^{\frac{d-1}{d-2}}) & \text{for } d > 3\\ O(\overline{K_{\varepsilon}}^2 \log(\overline{K_{\varepsilon}})), & \text{for } d = 3\\ O(\overline{K_{\varepsilon}}^2), & \text{for } d = 2 \end{cases}$$

Theorem (Exit hole distribution)

$$P(X_{\tau} \in \Gamma_{D_{i}}^{\varepsilon}) = \frac{K_{\varepsilon}^{i}}{\overline{K_{\varepsilon}}} + \begin{cases} O(\overline{K_{\varepsilon}}^{\frac{d-1}{d-2}}) & \text{for } d > 3\\ O(\overline{K_{\varepsilon}}\log(\overline{K_{\varepsilon}})), & \text{for } d = 3\\ O(\overline{K_{\varepsilon}}), & \text{for } d = 2 \end{cases}$$

Measure of the exit time through Finite Element Method (FEM)

The constant C_d is given by:

$$\mathcal{C}_d = rac{\max\{d-2,\,1\}}{2}rac{|\mathscr{C}(0,1)|}{|\Omega|}$$

In **dimension** 3 we find for the simple shapes through FEM:

Shape	<i>C</i> ₃	C ₃ (simu)
Sphere radius 1	1.500	1.46 ± 0.02
Sphere radius 2	0.187	0.18 ± 0.01
Cube	6.282	6.28 ± 0.02
Cylinder	8.000	8.06 ± 0.01

Measure of the exit time in higher dimension

- Monte Carlo simulation of the exit time τ_ε for a unit ball in dimension {2, 3, 4, 5}
- It's a rare event so very long simulations...
- Correct scaling in K_{ε} , but:

Dimension	C_d^{ball}	C_d^{ball} (simu)
2	2	3 ± 1
3	4.5	5 ± 3
4	16	20 ± 2
5	32.5	39 ± 3

The previous simulations where done with the initial condition $X_0 \sim \delta_0 \neq \nu_{\varepsilon}$. Fleming–Viot algorithm \rightarrow estimate the QSD on the fly using the Yaglom limit

Test: the unit sphere in dimension 3, fit of $\lambda_{\varepsilon} = C_3 \overline{K_{\varepsilon}}^{\alpha}$:

Initialisation	$ u_{\varepsilon} $	δ_0	$ u_{arepsilon}^{ m FV}$
<i>C</i> ₃	4	5 ± 3	3.7 ± 0.6
α	1	0.95 ± 0.08	1.0 ± 0.1

Numerical results on the exit hole distribution

Obtained through Monte-Carlo simulations, average over 10^4 simulations and several values of ε :

Unit sphere in dimension 3

- 2 holes of radius $\varepsilon = 0.5\varepsilon$.
- Estimate of $\mathbb{P}(X_{ au} \in \mathsf{\Gamma}^{arepsilon}_{D_2})$

By the theorem: $\frac{2}{3} + O(\varepsilon)$ By the simulation: 0.665 ± 0.001 Unit sphere in dimension ${\bf 4}$

- 4 holes of radius ε , 0.7 ε , 0.8 ε , 0.9 ε .
- Estimate of $\mathbb{P}(X_{ au} \in \mathsf{\Gamma}^{arepsilon}_{D_i})$

Hole	Theorem	Monte-Carlo
1	0.284	0.33 ± 0.02
2	0.205	0.17 ± 0.02
3	0.235	0.22 ± 0.02
4	0.264	0.27 ± 0.02

By the Green identity, we can write:

$$\begin{split} \lambda_{0}^{\varepsilon} &= \frac{\lambda_{0}^{\varepsilon} \langle \varphi^{\varepsilon}, u_{0}^{\varepsilon} \rangle}{\langle \varphi^{\varepsilon}, u_{0}^{\varepsilon} \rangle} = \frac{\langle \varphi^{\varepsilon}, -\Delta u_{0}^{\varepsilon} \rangle}{\langle \varphi^{\varepsilon}, u_{0}^{\varepsilon} \rangle} = \frac{\langle -\Delta \varphi^{\varepsilon}, u_{0}^{\varepsilon} \rangle - \langle \varphi^{\varepsilon}, \partial_{n} u_{0}^{\varepsilon} \rangle_{\Gamma^{\varepsilon}} + \langle \partial_{n} \varphi^{\varepsilon}, u_{0}^{\varepsilon} \rangle_{\Gamma^{\varepsilon}}}{\langle \varphi^{\varepsilon}, u_{0}^{\varepsilon} \rangle} \\ &= \frac{\langle -\Delta \varphi^{\varepsilon}, u_{0}^{\varepsilon} \rangle - \langle \varphi^{\varepsilon}, \partial_{n} u_{0}^{\varepsilon} \rangle_{\Gamma_{D}^{\varepsilon}}}{\langle \varphi^{\varepsilon}, u_{0}^{\varepsilon} \rangle} \\ &= \frac{\langle C_{d} \overline{K_{\varepsilon}}, u_{0}^{\varepsilon} \rangle - \langle O(\overline{K_{\varepsilon}}^{\frac{1}{n-2}}), \partial_{n} u_{0}^{\varepsilon} \rangle_{\Gamma_{D}^{\varepsilon}}}{\langle 1 + O(\overline{K_{\varepsilon}}), u_{0}^{\varepsilon} \rangle} \end{split}$$

By injecting all we know about the quasimode.

This sums up to being able to estimate the L^1 norm of the quasimode u_0 and its normal derivative

- The QSD is a useful tool to study the narrow escape problem
- With this approach we can solve it for any (locally) smooth domain in any dimension
- We get the scaling of the escape time and the exit hole distribution

Future work: How does the shape of the hole influence the escape time? \rightarrow the slit

The slit

