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Metastability of energetic origin

Thermal particle living in a potential well:
n Slow dynamics between the wells

Long time to escape. This is a rare event

Toy model: Langevin particle in a double-well (¢?%)
potential .

How much time does it take to escape the well?
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Eyring-Kramers' formula

Answer known since the 1930s:

Eyring-Kramers’ formula*
The escape time is exponentially distributed, with a rate r;, with i € {1,2}:

AV,
ri = C; exp (—k T) ,
B

AV, the height of the barrier, kg the Boltzmann constant, T the temperature, C; a
constant.

* Also Arrhenius, Polanyi or Van't Hoff law.
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What if energy is not the driving factor?

A potential made a confining
well and a few narrow canals:

Still a long time to escape.
This is still a rare event

480

Potential V

20 Is there an equivalent to the
Eyring Kramers formula in this
case?

160
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The narrow escape problem [1]

Toy model of the metastability of entropic origin:

Setting:
Domain Q with holes I'5, and reflecting
boundary ',

A Brownian motion starting at xg taking a

long time to exit 7. = inf{t > 0| X; & Q}
Goal: In the limit of small holes ¢ — 0:

Distribution of the escape time 7.

The exit hole distribution X,

[1] Introduced by Holcman and Schuss (2004), then large numbers of contributors: Ammari, Bénichou,
Chen, Chevalier, Cheviakov, Friedman, Grebenkov, Singer, Straube, Voituriez, Ward...
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Quasi-stationary distribution (QSD)

Definition
If Xo ~ ve, then Vt >0, P(X;:|t <7)=re

The quasi-stationary distribution is the distribution of X; that is stationary by the
dynamics conditionned on the fact that the Brownian motion has not escaped yet.

Why is it useful here?
If Xo ~ ve,
7. ~ Exp(\:) independent of X

Xr ~ /8,,V5

Why is it natural?

Counterpart of the stationary
distribution for metastable systems

Markov jump process [2]

[2] Di Gesu, Leligvre, Le Peutrec and Nectoux, Faraday Discussion, (2016)
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Quasi-stationary distribution and Eigenvalue problems

Yaglom'’s limit
If Xo € Q, then lim P(X;|t<7)=1r:
t—+00
The quasi-stationary distribution is attained after a large time of simulation.

Consider the adjoint generator (Fokker-Planck) L* of the process:

Then the stationary distribution s is given by £L*s =0 =0s.

The QSD v, is given by the eigenvector with the smallest eigenvalue: —Liv. = A vs.
Qualitative idea: Consider the eigen-decomposition of L (it exists as L. is self-adjoint
and has a compact resolvant), then

p(t) =3 (p(0), ukye et uk,

At large time, the dominant term is the one with the smallest eigenvalue, which is
identified to the QSD by Yaglom'’s limit.
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The QSD as an eigenvalue problem

We want to find the QSD v,

—Av. = \.ve in Q.
Opv: =0 on Iy

v =0 on I'p,

But thanks to [3]:

Flat angle between '}, and IE’,: Onve € L2(09)

90° angle between I, and I, : d,ve € L2(09)

We need to be able to integrate to get the exit hole
distribution X, .

[3] Jakab, Mitrea and Mitrea, Indiana University Mathematics Journal, (2009)
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Why modifying the domain?

We want to find the QSD v,

—Av. = A\, in Q.
Ope =0 on My

ve =0 on I'p,

But thanks to [3]:

Flat angle between I'§ and I, : d,v: ¢ 2(09)

90° angle between [}, and FED,_: Onve € L2(09)

We need to be able to integrate to get the exit hole
distribution X, .

Level curves of the solution v. near
a flat hole.

[3] Jakab, Mitrea and Mitrea, Indiana University Mathematics Journal, (2009)
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A more regular narrow escape problem

[4] Leligvre, Rachid and Stoltz, preprint (2024)
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Similar eigenvalue problem:

—Av. = A\1g in §~25
Onve =0 on Iy
ve =0 on FED,_

Previous work: Asymptotic expansion for
the disk and the ball [4]

My PhD work: Asymptotic expansion for
general domains in N > 2 dimensions
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What does the quasi-stationary distribution look like?

o 0113 0225 0338 0451 DE 0676 0789 0902 101 113
N S
QsD
0 00891 0138 0207 0276 0345 0414 0483 0552 0622 0691
L B ]
Dimension 2: Circle Dimension 3: Cube
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How to build the quasimode?

From the experiments, v, is almost

constant far from the holes:

We can approximate the solution v. by a
quasimode (semi-classic technique):

pe =1+ K1

with K. the approximation of the
eigenvalue and f the solution when the hole
is a point:

—Af =1 in Q
Onf =0 on dQ\{xM

with x(") the center of the hole.

QsD
a 00831 0138 0207 0276 0345 0414 0453 0552 0622 0691
N S T
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Point charge at the boundary

From the compatibility condition:

/Af = Onf
Q o0
The distribution f satisfies:
—Af=1 in Q
_ (1)
6nf = —’Q|5X(h) on 0f2

= Neumann's Green function with the singularity pushed to the boundary .
The Narrow escape problem has been related to f before in the literature. [1, 5]

[5] Silbergleit, Mandel and Nemenman (link with electrostatic)
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Singularity expansion of a point charge at the boundary

Key idea:
We know the solution to (1) on the half plane RT x R"~1:
1
fhaltplane(X) = ——————— + S(x),
)

with S a smooth function such that —AS = 1.

Consider the change of variable W: QN B(x(",§) — R* x R"~! that flattens locally
the domain. Then by Taylor expansion of W :

f(x) ~ fhalfplane © W(X) o< ‘X_Xth)}n_z (1 +0 (‘X N X(h)D)
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The quasimode is a good approximation of the QSD

This reasoning can be extended to N holes of radius ¢;, taking:

N N
¢5:1+ZKE’T;, andK:ZKg"
i=1 i=1

Theorem (here for n > 3 for simplicity)

The quasimode . verifies:

—Ap: = K. = Kepe + 0 (Kg Hf;’HOOJ’ﬁf) e

Onpe =0 on My

we =0 <(KE’> ”12> on FED,-
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Results on the exit time

Theorem
Let

6?72, for n >3
— (loge;))™t, forn=2

Then there exists a C, > 0 such that the eigenvalue ). scales as:

-

n—

O(K-"2?) for n >3
-1 _
Ae = (E[TaD = CphK: + 0(752 log(K.)), forn=3
O(K2), forn=2
n—1
The error for n > 3 does not worsen with n, KS2 =1
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Measure of the exit time constant through Finite Element Methods (FEM)

————— Sphere r=1
————— Sphere r=2
----- Square

100 ----- Cylinder

1071 e
s

Ae

1072
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Ke

107!

The constant C, is given by the

singularity expansion of f:

Ch =

max{n — 2, 1} |£(0,1)|

2]

In dimension 3 we find for the simple
shapes through FEM:

Shape G G (simu)
Sphere radius 1 | 1.500 | 1.46 + 0.02
Sphere radius 2 | 0.187 | 0.18 +0.01

Cube 6.282 | 6.28 +0.02

Cylinder 8.000 | 8.06 £ 0.01
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Measure of the exit time scaling in higher dimension

,,,,, 2D: A = 3.76 K" 0.99
rrrrr 3D: Ac = 5.25 K™ 0.95
,,,,, 4D: A = 2029K," 0.92

Ae

107!

————— 5D: A = 39.76K.~ 0.92

Monte Carlo simulation of the exit
time 7. for a unit ball in dimension

{2, 3, 4, 5}

It's a rare event so very long
simulations...

Correct scaling in K., but:
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Ke

10~

Dimension | CP2" | Cha (simu)
2 2 3+1
3 4.5 543
4 16 20+2
5 32.5 39+3
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Importance of the initial condition

The previous simulations where done with the inital condition as Xo ~ g # v- .
Fleming—Viot algorithm — estimate the QSD on the flight using the Yaglom limit

Test: the unit sphere in dimension 3:
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Initialisation | v, o vV
C, 4 5+3 3.7+0.6
K’ 1]095+0.081.0+0.1

£
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With the same method, we can also compute the exit hole distribution:

The exit hole distribution scales as:

, O(g)) for n >3
! . .

P(X; eTlp,) = ?6 + < O(K!log(K!)), forn=3
: O(K)), forn=2




Numerical results on the exit hole distribution

Obtained through Monte-Carlo simulations, average over 10* simulations and several
values of ¢: _ o _
Unit sphere in dimension 4

4 holes of radius ¢, 0.7¢, 0.8¢, 0.9¢.
By the theorem

Unit sphere in dimension 3

2 holes of radius €1 = £3/2. P(X; €lp,) = % + 0(£?)
By the theorem
P(X, € p,) = % + 0(e) Hole | Theorem | Monte-Carlo

1 0.284 0.33£0.02
2 0.205 0.17 £0.02
3 0.235 0.22 £0.02
4 0.264 0.27 £0.02

= P(X, € Tp,)|,.., = 0.665 = 0.001

simu
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© The QSD is a useful tool to study the narrow escape problem

© With this approach we can solve it for any (locally smooth) smooth domain in any
dimension

© We get the scaling of the escape time and the exit hole distribution

Future work: How does the shape of the hole influence the escape time? — the slit




The slit

QD (ronnormalised)
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