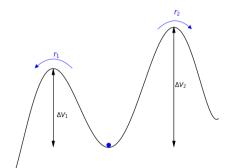


A quasi-stationary approach to the narrow escape problem

Louis Carillo

PhD under the supervision of Tony Lelièvre, Urbain Vaes & Gabriel Stoltz

Metastability of energetic origin



Thermal particle living in a potential well:

- Slow dynamics between the wells
- Long time to escape. This is a rare event
- Toy model: Langevin particle in a double-well (φ^4) potential .

How much time does it take to **escape** the well?

Answer known since the 1930s:

Eyring-Kramers' formula*

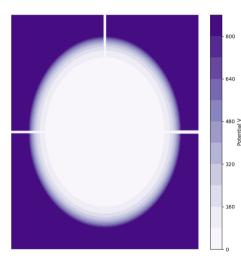
The escape time is exponentially distributed, with a rate r_i , with $i \in \{1, 2\}$:

$$r_i = C_i \exp\left(-rac{\Delta V_i}{k_{
m B}T}
ight),$$

 ΔV_i the height of the barrier, $k_{\rm B}$ the Boltzmann constant, T the temperature, C_i a constant.

* Also Arrhenius, Polanyi or Van't Hoff law.

What if energy is not the driving factor?



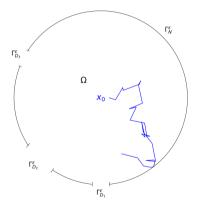
A potential made a confining well and a few **narrow canals**:

Still a long time to escape. This is still a **rare event**

Is there an equivalent to the Eyring Kramers formula in this case?

The narrow escape problem [1]

Toy model of the metastability of entropic origin:



Setting:

- Domain Ω with holes $\Gamma^{\varepsilon}_{D_i}$ and reflecting boundary Γ^{ε}_N
- A Brownian motion starting at x_0 taking a long time to exit $\tau_{\varepsilon} = \inf\{t \ge 0 \mid X_t \notin \overline{\Omega}\}$

Goal: In the limit of small holes $\varepsilon \to 0$:

- Distribution of the escape time $au_{arepsilon}$
- The exit hole distribution $X_{ au_{arepsilon}}$

[1] Introduced by Holcman and Schuss (2004), then large numbers of contributors: Ammari, Bénichou, Chen, Chevalier, Cheviakov, Friedman, Grebenkov, Singer, Straube, Voituriez, Ward...

Quasi-stationary distribution (QSD)

Definition

If
$$X_0 \sim \nu_{arepsilon}$$
, then $orall t > 0$, $\mathbb{P}(X_t \mid t < au_{arepsilon}) =
u_{arepsilon}$

The quasi-stationary distribution is the distribution of X_t that is stationary by the dynamics conditionned on the fact that the Brownian motion has not escaped yet.

Why is it natural?

• Counterpart of the stationary distribution for metastable systems

Why is it useful here?

• If
$$X_0 \sim \nu_{\varepsilon}$$
,
 $\tau_{\varepsilon} \sim \operatorname{Exp}(\lambda_{\varepsilon})$ independent of $X_{\tau_{\varepsilon}}$
 $X_{\tau_{\varepsilon}} \sim \int \partial_n \nu_{\varepsilon}$

Markov jump process [2]

[2] Di Gesù, Lelièvre, Le Peutrec and Nectoux, Faraday Discussion, (2016)

Quasi-stationary distribution and Eigenvalue problems

Yaglom's limit

If
$$X_0 \in \Omega$$
, then $\lim_{t \to +\infty} \mathbb{P}(X_t \,|\, t < au_arepsilon) =
u_arepsilon$

The quasi-stationary distribution is attained after a large time of simulation.

Consider the adjoint generator (Fokker-Planck) $\mathcal{L}_{\varepsilon}^{*}$ of the process: Then the stationary distribution s is given by $\mathcal{L}^{*}s = 0 = 0 s$. The QSD ν_{ε} is given by the eigenvector with the smallest eigenvalue: $-\mathcal{L}_{\varepsilon}^{*}\nu_{\varepsilon} = \lambda_{\varepsilon} \nu_{\varepsilon}$. Qualitative idea: Consider the eigen-decomposition of $\mathcal{L}_{\varepsilon}^{*}$ (it exists as $\mathcal{L}_{\varepsilon}$ is self-adjoint and has a compact resolvant), then

$$ho(t) = \sum_k \langle
ho(0), \ u_arepsilon^k
angle \mathrm{e}^{-\lambda_arepsilon^k t} u_arepsilon^k,$$

At large time, the dominant term is the one with the smallest eigenvalue, which is identified to the QSD by Yaglom's limit.

The QSD as an eigenvalue problem

We want to find the QSD ν_{ε}

$$\begin{cases} -\Delta\nu_{\varepsilon} = \lambda_{\varepsilon}\nu_{\varepsilon} & \text{ in } \Omega_{\varepsilon} \\ \partial_{n}\nu_{\varepsilon} = 0 & \text{ on } \Gamma_{N}^{\varepsilon} \\ \nu_{\varepsilon} = 0 & \text{ on } \Gamma_{D_{i}}^{\varepsilon} \end{cases}$$

But thanks to [3]: Flat angle between Γ_N^{ε} and $\Gamma_{D_i}^{\varepsilon}$: $\partial_n \nu_{\varepsilon} \notin L^2(\partial \Omega)$ 90° angle between Γ_N^{ε} and $\widetilde{\Gamma}_{D_i}^{\varepsilon}$: $\partial_n \nu_{\varepsilon} \in L^2(\partial \Omega)$ We need to be able to integrate to get the exit hole distribution X_{τ} .

 Γ_N^{ε} Ω ۲£ Γ_D^{ε}

[3] Jakab, Mitrea and Mitrea, Indiana University Mathematics Journal, (2009)

Why modifying the domain?

We want to find the QSD u_{ε}

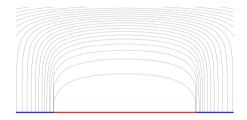
$$\begin{cases} -\Delta\nu_{\varepsilon} = \lambda_{\varepsilon}\nu_{\varepsilon} & \text{ in } \Omega_{\varepsilon} \\ \partial_{n}\nu_{\varepsilon} = 0 & \text{ on } \Gamma_{N}^{\varepsilon} \\ \nu_{\varepsilon} = 0 & \text{ on } \Gamma_{D_{i}}^{\varepsilon} \end{cases}$$

But thanks to [3]:

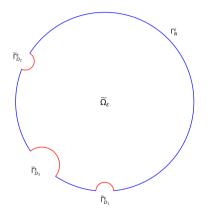
Flat angle between Γ_N^{ε} and $\Gamma_{D_i}^{\varepsilon}$: $\partial_n \nu_{\varepsilon} \notin L^2(\partial \Omega)$ 90° angle between Γ_N^{ε} and $\widetilde{\Gamma}_{D_i}^{\varepsilon}$: $\partial_n \nu_{\varepsilon} \in L^2(\partial \Omega)$ We need to be able to integrate to get the exit hole distribution X_{τ} .

Figure: Level curves of the solution ν_{ε} near a flat hole.

[3] Jakab, Mitrea and Mitrea, Indiana University Mathematics Journal, (2009)



A more regular narrow escape problem



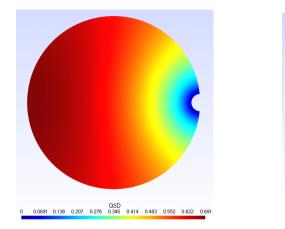
[4] Lelièvre, Rachid and Stoltz, preprint (2024)

Similar eigenvalue problem:

$$\begin{cases} -\Delta\nu_{\varepsilon} = \lambda_{\varepsilon}\nu_{\varepsilon} & \text{ in } \widetilde{\Omega}_{\varepsilon} \\ \partial_{n}\nu_{\varepsilon} = 0 & \text{ on } \Gamma_{N}^{\varepsilon} \\ \nu_{\varepsilon} = 0 & \text{ on } \widetilde{\Gamma}_{D_{i}}^{\varepsilon} \end{cases}$$

Previous work: Asymptotic expansion for the disk and the ball [4] My PhD work: Asymptotic expansion for general domains in $N \ge 2$ dimensions

What does the quasi-stationary distribution look like?



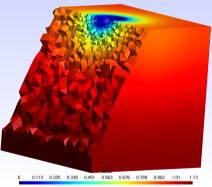
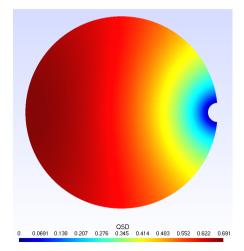


Figure: Dimension 2: Circle

Figure: Dimension 3: Cube

How to build the quasimode?

From the experiments, ν_{ε} is almost constant far from the holes:



We can approximate the solution ν_{ε} by a quasimode (semi-classic technique):

$$arphi_arepsilon = 1 + oldsymbol{K}_arepsilon oldsymbol{f}$$

with K_{ε} the approximation of the eigenvalue and f the solution when the hole is a point:

$$egin{cases} -\Delta f = 1 & ext{ in } \Omega \ \partial_n f = 0 & ext{ on } \partial \Omega ackslash \{x^{(h)}\} \end{cases}$$

with $x^{(h)}$ the center of the hole.

Point charge at the boundary

From the compatibility condition:

$$\int_{\Omega} \Delta f = \oint_{\partial \Omega} \partial_n f$$

The distribution *f* satisfies:

 \Rightarrow Neumann's Green function with the singularity pushed to the boundary . The Narrow escape problem has been related to f before in the literature. [1, 5]

[5] Silbergleit, Mandel and Nemenman (link with electrostatic)

Singularity expansion of a point charge at the boundary

Key idea:

• We know the solution to (1) on the half plane $\mathbb{R}^+ \times \mathbb{R}^{n-1}$:

$$f_{\mathrm{halfplane}}(x) = rac{1}{\left|x - x^{(h)}
ight|^{n-2}} + S(x),$$

with S a smooth function such that $-\Delta S = 1$.

• Consider the change of variable $\Psi \colon \Omega \cap B(x^{(h)}, \delta) \to \mathbb{R}^+ \times \mathbb{R}^{n-1}$ that flattens locally the domain. Then by Taylor expansion of Ψ :

$$f(x) \sim f_{ ext{halfplane}} \circ \Psi(x) \propto rac{1}{\left|x-x^{(h)}
ight|^{n-2}} \left(1+O\left(\left|x-x^{(h)}
ight|
ight)
ight)$$

The quasimode is a good approximation of the QSD

This reasoning can be extended to N holes of radius ε_i , taking:

$$arphi_arepsilon = 1 + \sum_{i=1}^N \mathcal{K}^i_arepsilon f_i, \qquad ext{ and } \overline{\mathcal{K}_arepsilon} = \sum_{i=1}^N \mathcal{K}^i_arepsilon$$

Theorem (here for n > 3 for simplicity)

The quasimode φ_{ε} verifies:

$$\begin{cases} -\Delta \varphi_{\varepsilon} = \overline{K_{\varepsilon}} = \overline{K_{\varepsilon}} \varphi_{\varepsilon} + O\left(\overline{K_{\varepsilon}}^{2} \|f_{i}\|_{\infty, i, \widetilde{\Omega}_{\varepsilon}}\right) & \text{ in } \widetilde{\Omega}_{\varepsilon} \\ \partial_{n} \varphi_{\varepsilon} = 0 & \text{ on } \Gamma_{N}^{\varepsilon} \\ \varphi_{\varepsilon} = O\left(\left(K_{\varepsilon}^{i}\right)^{\frac{1}{n-2}}\right) & \text{ on } \widetilde{\Gamma}_{D_{i}}^{\varepsilon} \end{cases}$$

Results on the exit time

Theorem

Let

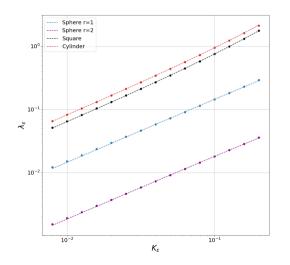
$$\mathcal{K}^{i}_{arepsilon} = egin{cases} arepsilon^{n-2}, & ext{for } n \geq 3 \ -\left(\logarepsilon_{i}
ight)^{-1}, & ext{for } n=2 \end{cases}$$

Then there exists a $C_n > 0$ such that the eigenvalue λ_{ε} scales as:

$$\lambda_{\varepsilon} = \left(\mathbb{E}[\tau_{\varepsilon}]\right)^{-1} = C_n \overline{K_{\varepsilon}} + \begin{cases} O(\overline{K_{\varepsilon}}^{\frac{n-1}{n-2}}) & \text{for } n > 3\\ O(\overline{K_{\varepsilon}}^2 \log(\overline{K_{\varepsilon}})), & \text{for } n = 3\\ O(\overline{K_{\varepsilon}}^2), & \text{for } n = 2 \end{cases}$$

The error for n>3 does not worsen with n , $K_{\varepsilon}^{\frac{n-1}{n-2}}=\varepsilon^{n-1}$

Measure of the exit time constant through Finite Element Methods (FEM)



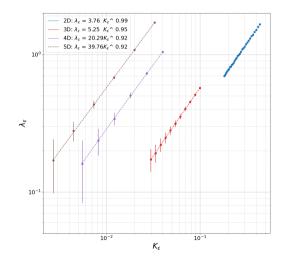
The constant C_n is given by the singularity expansion of f:

$$C_n = \frac{\max\{n-2, 1\}}{2} \frac{|\mathscr{C}(0,1)|}{|\Omega|}$$

In **dimension** 3 we find for the simple shapes through FEM:

Shape	<i>C</i> ₃	C ₃ (simu)
Sphere radius 1	1.500	1.46 ± 0.02
Sphere radius 2	0.187	0.18 ± 0.01
Cube	6.282	6.28 ± 0.02
Cylinder	8.000	8.06 ± 0.01

Measure of the exit time scaling in higher dimension



- Monte Carlo simulation of the exit time τ_ε for a unit ball in dimension {2, 3, 4, 5}
- It's a rare event so very long simulations...
- Correct scaling in K_{ε} , but:

Dimension	C_n^{ball}	C_n^{ball} (simu)
2	2	3 ± 1
3	4.5	5 ± 3
4	16	20 ± 2
5	32.5	39 ± 3

The previous simulations where done with the initial condition as $X_0 \sim \delta_0 \neq \nu_{\varepsilon}$. Fleming–Viot algorithm \rightarrow estimate the QSD on the flight using the Yaglom limit

Test: the unit sphere in dimension 3:

Initialisation	$ u_{\varepsilon}$	δ_0	$ u_arepsilon^{ m FV}$
Cn	4	5 ± 3	3.7 ± 0.6
$K_{\varepsilon}^{?}$	1	0.95 ± 0.08	1.0 ± 0.1

With the same method, we can also compute the exit hole distribution:

Theorem

The exit hole distribution scales as:

$$P(X_{\tau} \in \Gamma_{D_i}) = \frac{K_{\varepsilon}^i}{\overline{K_{\varepsilon}}} + \begin{cases} O(\varepsilon_i) & \text{for } n > 3\\ O(K_{\varepsilon}^i \log(K_{\varepsilon}^i)), & \text{for } n = 3\\ O(K_{\varepsilon}^i), & \text{for } n = 2 \end{cases}$$

Numerical results on the exit hole distribution

Obtained through Monte-Carlo simulations, average over 10^4 simulations and several values of ε : Unit sphere in dimension 4

Unit sphere in dimension 3

- 2 holes of radius $\varepsilon_1 = \varepsilon_2/2$.
- By the theorem $\mathbb{P}(X_{ au} \in \Gamma_{D_2}) = rac{2}{3} + O(arepsilon)$

 $\Rightarrow \mathbb{P}(X_{ au} \in \mathsf{\Gamma}_{D_2})|_{ ext{simu}} = 0.665 \pm 0.001$

• 4 holes of radius ε , 0.7ε , 0.8ε , 0.9ε .

• By the theorem $\mathbb{P}(X_{ au}\in \Gamma_{D_2})=rac{2}{3}+O(arepsilon^2)$

Hole	Theorem	Monte-Carlo
1	0.284	0.33 ± 0.02
2	0.205	0.17 ± 0.02
3	0.235	0.22 ± 0.02
4	0.264	0.27 ± 0.02

- The QSD is a useful tool to study the narrow escape problem
- With this approach we can solve it for any (locally smooth) smooth domain in any dimension
- We get the scaling of the escape time and the exit hole distribution

Future work: How does the shape of the hole influence the escape time? \rightarrow the slit

The slit

