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Metastability of energetic origin

Thermal particle living in a potential well:

Slow dynamics between the wells

P Long time to escape. This is a rare event
n Toy model: Langevin particle in a double-well (%)
N potential

How much time does it take to escape the well?

Eyring-Kramers’ formula |

The escape time is exponentially distributed, with a
rate rj, with i € {1,2}:

AV;
r; = C;exp <_k _,_)
B

louis.carillo@enpc.fr 2 of 13

v




What if energy is not the driving factor?

480 >
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A potential made a confining well
and a few narrow canals:

Still a long time to escape. This is
still a rare event

Is there an equivalent to the

Eyring-Kramers formula in this
case?
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The narrow escape problem [1]

Toy model of the metastability of entropic origin:

Setting:
Domain Q with holes I'5, and reflecting
boundary ',

A Brownian motion starting at xg taking a

long time to exit 7. = inf{t > 0| X; & Q}
Goal: In the limit of small holes ¢ — 0:

Distribution of the escape time 7.

The law of exit hole X

[1] Introduced by Holcman and Schuss (2004), then large numbers of contributors: Ammari, Bénichou,
Chen, Chevalier, Cheviakov, Friedman, Grebenkov, Singer, Straube, Voituriez, Ward...
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An approach to solve the narrow escape problem

Let p(t,x) = Py (t < 72), the survival probability at time t starting from x then
Op=Ap inQ + boundary conditions

With the eigen decomposition (Ax, uk)k>o of the Laplacian A

p(t,x) =3 (1, ub)e X tuk(x)

k>0
At large time, the dominant term is the one with the smallest eigenvalue /\g.
Po(t < 72) =~ (1, ug)e*/\gtug(x)
Rigorous approach: the quasi-stationary distribution (QSD) [2]

[2] Di Gesu, Lelievre, Le Peutrec and Nectoux, Faraday Discussion, (2016)

louis.carillo@enpc.fr 5 of 13



The narrow escape problem as an eigenvalue problem

[3] Lelievre, Rachid and Stoltz, preprint (2024)
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Eigenvalue problem with modified holes:

—Au® =200 in Q.
Opu, = on I}
€ N
wW$W=0 on Ip,

A = exit time distribution
ug = law of exit point

Previous work: Asymptotic scaling for the
disk and the ball [4]

My PhD work: Asymptotic scaling for
general domains in d > 2 dimensions
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How does 1 look like?

o 0113 0225 0338 0451 DE 0676 0789 0902 101 113
N S
QsD
0 00891 0138 0207 0276 0345 0414 0483 0552 0622 0691
L B ]
Dimension 2: Circle Dimension 3: Cube
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How to build the quasimode?

From the experiments, ug is almost
constant far from the holes:

QsD
a 00681 0138 0207 0276 0345 0414 0453 0552 0622 0691
N e
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We can approximate the solution u? by a
quasimode (semi-classical technique):

ug ~ 1+ K.f

with K. the approximation of the

eigenvalue and f the solution when the hole

is a point:

-Af=1 in
Onf =0 on 9Q\{x(N}

with x(" the center of the hole.
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Results on the exit time

Theorem [Asymptotic of the exit time] |

Consider only one hole of radius r.. Then there exists a Cy o > 0 such that the eigenvalue
A0 scales as:

Cyqri=? +0(rd™Y, ford >3

—1
N = (EfR]) = Gar +0(r:? log(1z)), for d =3
Coq (log(r)) " +0 ([log(r)] %), ford =2

Similar expansions are possible with multiple holes,
for instance with r. = Z,N:l(rg('))d*2 for d > 3 and N holes
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Measure of the exit time through Finite Element Method (FEM)

The constant Cy q is given by:

————— Sphere r=1

10° :E EEE:E::Z ('r:,. C . max{d - 27 1} |(£(0’ 1)|
el 98- 2 Q]
/,,:«;;::iif::’;f ‘ In dimension 3 we find for the simple
wr e shapes through FEM:

o . ,' Shape Ga | Ga (simu)
Sphere radius 1 | 1.500 | 1.46 + 0.02
T Sphere radius 2 | 0.187 | 0.18 £ 0.01
) T Cube 6.282 | 6.28 +0.02
) Cylinder 8.000 | 8.06 +0.01

Ke
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Measure of the exit time in higher dimension

10° ,,,"
N 2
4 ,/’
,’/. /’( ’/
// ’ /‘
'
/‘ 3
s
10t 8
/’/
Al
A 2D expected 2 | fit: 1.9-x1
3D expected 4.5 | fit: 4.3-x1°
2 R T O 4D expected 16 | fit: 11.0 - x%°
P
02 4 5D expected 37.5] fit: 20.8 - x*9
————— 6D expected 72 | fit: 34.6 - x%°
107 1073 1072 107!
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10°

Monte Carlo simulation of the exit
time 7. for a unit ball in dimension
{2, 3, 4,5}

It is a rare event so very long
simulations...

Correct scaling in K., but:

Dimension | C2aT | CBal (simu)
2 2 1.9
3 4.5 4.3
4 16 11
5 325 20.8
6 72 34.6
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Several reasons:

© Asymptotics requires very small ¢ ~ 1073
© Trade-off VAt < € and Ngep ~ At 2~

Solution: Adaptive timestep algorithm: walk-on-sphere




Conclusion

The narrow escape is a toy model of
metastability of entropic origin

With our approach we can solve it for
any (locally) smooth domain in any
dimension

We get the scaling of the escape time
and the law of exit hole

Future work:

Study the influence of the hole
geometry on the escape event — the
slit
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