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Introduction Microcanonical Langevin Monte Carlo (MCLMC(C)

Sample Boltzmann-Gibbs probability measure: First introduced in [1].
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Main properties:

* Invariant probability measure with the correct marginal (1) on

the position:
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Potential

* Velocity with constant norm:
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Simulation of MCLMC

m Integration scheme:

Figure 1. Ackley potential: challenges the usual sampling methods with rare events. (
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Derivation of MCLMC 1
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Starting from the Hamiltonian < u*+1 (6)
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the Hamilton equations are: R |2
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; ‘H(t) |2 B From the uniform distribution at start, histograms are computed
1 over 10,000 particles and them compared to (13 computed b
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[1 (t) — q_ 1vxv($(t)) analytic integration (low dimensional toy models).
\ m MCLMC converges in 10 % less physical time than Langevin (2) with
our tests.
MCLMC can be derived from two ingredients:
" a rescaling INn time: Error at dt=0A.001
Error at dt = 0.002
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* the projection on the unit sphere:
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This leads to the deterministic part of (4). The stochastic part is a E i | | | | ]
Brownian motion the sphere that preserves the Hamiltonian (3). -
This has been done in [2] and [3], and can be generalised for a larger
family of Hamiltonians. 010 | | | | -
Remarks on the invariant measure
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The generator of MCLMC (4) can be decomposed into two parts. \ _\
In the weighted space LA(X x R) by (5); N
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Figure 2. Supremum norm of the error on the marginal in terms of 7). MCLMC allows a larger range
of noise intensity.
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