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Introduction

Sample Boltzmann–Gibbs probability measure:

µβ ∝ e−βV , (1)

through molecular dynamics using Langevin dynamics:
dxt = Πt dt,

dΠt = −∇V (xt) − γΠt dt +
√

2TγdWt,
(2)

with the positions x ∈ X and momenta Π ∈ Rd.

Figure 1. Ackley potential: challenges the usual sampling methods with rare events.

Derivation of MCLMC

Starting from the Hamiltonian

H(x, Π) = 1
d − 1

V (x) + ln(|Π|), (3)

the Hamilton equations are:
x′(t) = Π(t)

|Π(t)|2

Π′(t) = − 1
d − 1

∇xV (x(t))

MCLMC can be derived from two ingredients:

a rescaling in time:

ds

dt
= ∂H

∂|Π|
= 1

|Π|
;

the projection on the unit sphere:

u = Π
|Π|

.

This leads to the deterministic part of (4). The stochastic part is a

Brownian motion the sphere that preserves the Hamiltonian (3).

This has been done in [2] and [3], and can be generalised for a larger

family of Hamiltonians.

Remarks on the invariant measure

The generator of MCLMC (4) can be decomposed into two parts.

In the weighted space Lp
ρ(X × Rd) by (5):

L∗
ham = −Lham,

L∗
noise = Lnoise.

Microcanonical Langevin Monte Carlo (MCLMC)

First introduced in [1].


dxs = us

|us|2
ds

dus = − 1
d − 1

P (us)∇V (xs) dt + ηP (us) ◦ dWs

(4)

with P (u) = Id − uuT

|u|2

Main properties:

Invariant probability measure with the correct marginal (1) on

the position:

ρ|u0|(dx, du) = Z−1
|u0| e

−βV (x)δ (|u| − |u0|) dx du, (5)

ergodic in X × Sd−1
|u0| ;

Velocity with constant norm:

∀s > 0, |us| = |u0|.

Simulation of MCLMC

� Integration scheme:

xn+1
2
= xn + 1

2
∆t

un

|un|2
,

u∗
n+1 = un − 1

d − 1
∆t∇V (xn+1

2
) + η

√
∆tξn,

un+1 = u∗
n+1

|u∗
n+1|

xn+1 = xn+1
2
+ 1

2
∆t

un+1

|un+1|2
,

(6)

with {ξn} independent N (0, Id) random variables.

� From the uniform distribution at start, histograms are computed

over 10, 000 particles and them compared to µβ computed by

analytic integration (low dimensional toy models).

� MCLMC converges in 10 % less physical time than Langevin (2) with

our tests.

Figure 2. Supremum norm of the error on the marginal in terms of η. MCLMC allows a larger range
of noise intensity.
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