

Microcanonical Langevin Monte Carlo

Louis Carillo Gabriel Stoltz and Urbain Vaes

(2)

CERMICS

Introduction

Sample Boltzmann–Gibbs probability measure:

$$\mu_{\beta} \propto \mathrm{e}^{-\beta V},$$
 (1)

through molecular dynamics using Langevin dynamics:

$$dx_t = \Pi_t dt, d\Pi_t = -\nabla V(x_t) - \gamma \Pi_t dt + \sqrt{2T\gamma} dW_t,$$

with the **positions** $x \in \mathcal{X}$ and **momenta** $\Pi \in \mathbb{R}^d$.

Microcanonical Langevin Monte Carlo (MCLMC)

First introduced in [1].

$$\begin{cases} dx_s = \frac{u_s}{|u_s|^2} ds \\ du_s = -\frac{1}{d-1} P(u_s) \nabla V(x_s) dt + \eta P(u_s) \circ dW_s \end{cases}$$
(4) with $P(u) = \operatorname{Id} - \frac{uu^T}{|u|^2}$

Main properties:

• Invariant probability measure with the correct marginal (1) on

the position:

$$\rho_{|u_0|}(dx, \, du) = Z_{|u_0|}^{-1} \,\mathrm{e}^{-\beta V(x)} \delta\left(|u| - |u_0|\right) \, dx \, du, \tag{5}$$

ergodic in $\mathcal{X} imes \mathcal{S}^{d-1}_{|u_0|}$;

Velocity with constant norm:

$$\forall s > 0, \quad |u_s| = |u_0|.$$

Simulation of MCLMC

Figure 1. Ackley potential: challenges the usual sampling methods with rare events.

Derivation of MCLMC

Starting from the **Hamiltonian**

$$H(x, \Pi) = \frac{1}{d-1} V(x) + \ln(|\Pi|), \tag{3}$$

the Hamilton equations are:

Integration scheme:

(6)

$$\begin{cases} x'(t) = \frac{\Pi(t)}{|\Pi(t)|^2} \\ \Pi'(t) = -\frac{1}{d-1} \nabla_x V(x(t)) \end{cases}$$

MCLMC can be derived from two ingredients:

• a **rescaling** in time:

$$\frac{ds}{dt} = \frac{\partial H}{\partial |\Pi|} = \frac{1}{|\Pi|};$$
• the **projection** on the unit sphere:

$$u = \frac{\Pi}{|\Pi|}.$$

This leads to the **deterministic** part of (4). The stochastic part is a **Brownian motion the sphere** that preserves the Hamiltonian (3). This has been done in [2] and [3], and can be generalised for a larger family of Hamiltonians.

$\overline{|u_{n+1}|^2}$ 2 10 + 2

with $\{\xi_n\}$ independent $\mathcal{N}(0, \mathrm{Id})$ random variables.

- From the uniform distribution at start, histograms are computed over 10,000 particles and them compared to μ_{β} computed by analytic integration (low dimensional toy models).
- MCLMC converges in 10 % less physical time than Langevin (2) with our tests.

Remarks on the invariant measure

The generator of MCLMC (4) can be decomposed into two parts.

In the weighted space $\mathrm{L}^p_
ho(\mathcal{X} imes \mathbb{R}^d)$ by (5):

$$egin{aligned} \mathcal{L}^*_{ ext{ham}} &= -\mathcal{L}_{ ext{ham}}, \ \mathcal{L}^*_{ ext{noise}} &= \mathcal{L}_{ ext{noise}}. \end{aligned}$$

Figure 2. Supremum norm of the error on the marginal in terms of η . **MCLMC** allows a larger range of noise intensity.

References

[1] G. Ver Steeg and A. Galstyan Hamiltonian Dynamics with Non-Newtonian Momentum for Rapid Sampling. 2021 arXiv:2111.02434 [2] J. Robnik, G. B. de Luca, E. Silverstein et U. Seljak Microcanonical Hamiltonian Monte Carlo. 2023 arXiv:2212.08549v2 [3] J. Robnik et U. Seljak Fluctuation without dissipation: Microcanonical Langevin Monte Carlo. 2023 arXiv:2303.18221v2

louis.carillo@ens-paris-saclay.fr