

INSTITUT
POLYTECHNIQUE
DE PARIS

inria

Urbain Vaes

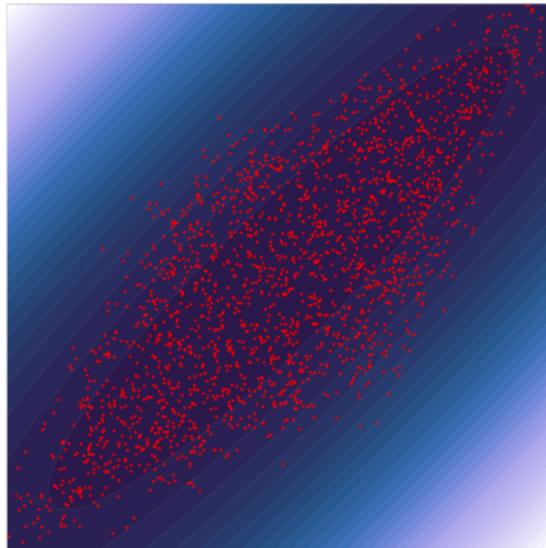
Nicolai Gerber

Finite particle limit in the Ensemble Kalman Sampler

Louis Carillo

PhD under the supervision of Tony Lelièvre, Urbain Vaes & Gabriel Stoltz

Sampling anisotropy



Sampling a **highly anisotropic** Boltzmann distribution $x \mapsto e^{-V(x)}$

Overdamped Langevin dynamics:

$$dX_t = -\nabla V(X_t) dt + \sqrt{2} dW_t$$

Figure: 100 particles using $\Delta t = 10^{-3}$ following **overdamped Langevin** in an anisotropic potential.

Sampling anisotropy

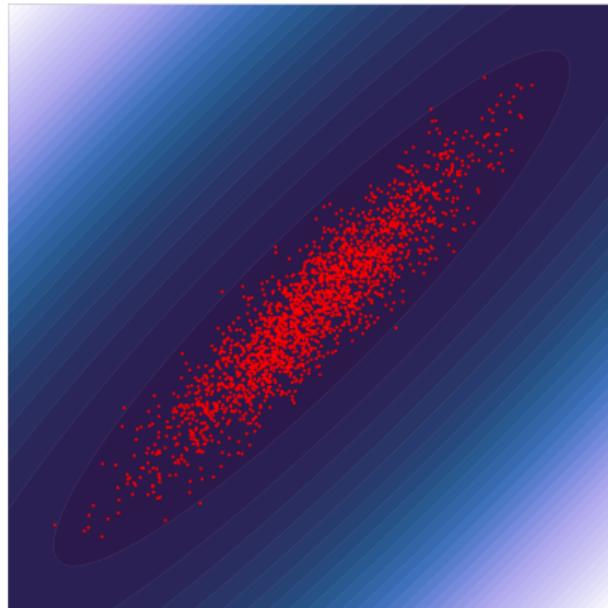


Figure: 100 particles using $\Delta t = 10^{-3}$ following **preconditioned Langevin** in an anisotropic potential.

Sampling a **highly anisotropic** Boltzmann distribution $x \mapsto e^{-V(x)}$

Overdamped Langevin dynamics:

$$dX_t = -\nabla V(X_t) dt + \sqrt{2} dW_t$$

Preconditioned Langevin dynamics:

$$dX_t = -\mathcal{C}_V \nabla V(X_t) dt + \sqrt{2\mathcal{C}_V} dW_t$$

where \mathcal{C}_V is the covariance matrix of the target distribution.

Ensemble Kalman Sampler (EKS)

$$dX_t^n = -\mathcal{C}(\rho_{X_t}) \nabla V(X_t^n) dt + \frac{d+1}{N} (X_t^n - \mathcal{M}_{X_t}) + \sqrt{2\mathcal{C}(\rho_{X_t})} dW_t^n$$

with $\mathcal{C}(\rho_{X_t})$ the empirical covariance of the finite particle ensemble
and correction term for finite number of particles

- While particles are interacting through $\mathcal{C}(\rho_{X_t})$, the invariant measure is as if they were independent $e^{-V(x)} \otimes \dots \otimes e^{-V(x)}$
- Affine invariant method, always well-conditioned
- Gradient-free approximation can be used
- Square root approximation of covariance for high-dimension if needed

Finite particle and mean-field limit

$$dX_t^n = -\mathcal{C}(\rho_{X_t}) \nabla V(X_t^n) dt + \frac{d+1}{N} (X_t^n - \mathcal{M}_{X_t}) + \sqrt{2\mathcal{C}(\rho_{X_t})} dW_t^n$$

with $\mathcal{C}(\rho_{X_t})$ the empirical covariance of the finite particle ensemble
and correction term for finite number of particles

Contributions

- Convergence to the mean-field limit $N \rightarrow \infty$ (propagation of chaos).
- For finite N , we aim to show uniform in time convergence as well i.e.,

$$\mathbb{E} \left[\sum_{n=1}^N |X_t^n - Y_t^n|^2 \right] \leq C e^{-(2+\varepsilon(N))t} \quad \text{uniformly in time}$$

where Y_t at equilibrium, with a synchronous coupling.