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Metastability of energetic origin

Thermal particle living in a potential well:

• Slow dynamics between the wells

• Long time to escape. This is a rare event

Toy model: Langevin particle in a double-well
potential

How much time does it take to escape the well?

Eyring-Kramers’ formula

The escape time is exponentially distributed, with a
rate ri , with i ∈ {1, 2}:

ri = Ci exp

(
−∆Vi

kBT

)
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What if energy is not the driving factor?

A potential made of a confining
well and a few narrow canals:

Still a long time to escape. This is
still a rare event

Is there an equivalent to the
Eyring-Kramers formula in this
case?
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The narrow escape problem

Toy model of the metastability of entropic origin:

Setting:

• Domain Ω with holes ΓεD and reflecting
boundary ΓεN

• A Brownian motion starting at x0 taking a
long time to exit τε = inf{t ≥ 0 |Xt ̸∈ Ω}

dXt =
√
2dBt − 1ΓεD

(Xt)n(Xt)dLt .

Goal: In the limit of small holes ε → 0:

• The law of the escape time τε

• The law of exit hole Xτε
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References

Motivated by biology: ion channels, receptors on cell membranes, diffusion of a molecule
in a cell...

In the physics literature for Ω a disk or a ball:

• Introduced by Holcman and Schuss in 2004

• A lot of formal results for E[τε] : Bénichou, Voituriez 2008 Cheviakov Kololnikov,
Pierce, Pillay, Straubem, Ward 2010

In the math literature still in simple geometries

• Matched Asymptotics by Chen, Friedman 2011

• Layer potential techniques by Ammari, Kalimeris, Kang, Lee 2012

• Quasi-stationary approach for E[τε] and Law(Xτε) by Lelièvre, Rachid, Stoltz 2024
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A spectral approach to solve the narrow escape problem

Let ρ(x , t)be the density of probability to be at y at time t < τε starting from ρ0
then it verifies the Fokker-Plank equation:

∂tρ = ∆ρ in Ω

∂nρ = 0 on ΓεN

ρ = 0 on ΓεD

ρ(·, 0) = ρ0 in Ω

(1)

Idea of the proof: Itô’s lemma, the local time is continuous with finite variation

The operator Lε associated to (1) is self-adjoint with compact resolvent
→ there exists an orthonormal basis in H1(Ω) of eigenfunctions (ukε )k≥0 and

eigenvalues (λk
ε )k≥0 ranked in increasing order λ0

ε < λ1
ε < ...

ρ(x , t) =
∑
k≥0

⟨ρ0, ukε ⟩e−λk
εtukε (x)
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Large time behaviour

If the eigengap λ1
ε − λ0

ε is large, then the large time behaviour of ρ(x , t) is dominated by
the first eigenmode

ρ(x , t) =
∑
k≥0

⟨ρ0, ukε ⟩e−λk
εtukε (x) ≈ ⟨ρ0, u0ε ⟩e−λ0

εtu0ε (x)

From the probability, we deduce the behaviour of quantities of interest:

• The exit time distribution is exponentially distributed with parameter λ0
ε

• The law of the exit hole will be dictated by u0ε
• If we start from ρ0 = u0ε , these results are exact

⇒ Rigorous approach: the quasi-stationary distribution [1]

[1] Di Gesù, Lelièvre, Le Peutrec and Nectoux, Faraday Discussion, (2016)
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Quasi-stationary distribution (QSD)

Definition by the Yaglom limit

If X0 ∈ Ω, then lim
t→+∞

Law(Xt | t < τε) = νε

Starting from ρ0 = u0ε , for any x ∈ Ω

ρ(x , t) = e−λ0
εtu0ε (x)

Consequences:
• The quasi-stationary distribution is the first eigenmode up to a renormalisation

• If ρ0 = νε, then ρ(·, t) = νε up to a renormalisation for all t ≥ 0
the quasi-stationary distribution is stationary until the escape event
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Fundamental properties of the QSD

Assume that X0 ∼ νε. Then
• The exit time τε is exponentially distributed ∼ Exp(λε

0)

Pνε [τ ≥ s + t] = Pνε [τ ≥ s + t | τ ≥ s]Pνε [τ ≥ s]

= Pνε [τ ≥ t]Pνε [τ ≥ s]

• The exit point Xτε is independent of the exit time τε

Pνε [Xτε ∈ A, τε ≥ t] = Pνε [Xτε ∈ A | τε ≥ t]Pνε [τε ≥ t]

= Pνε [Xτε ∈ A]Pνε [τε ≥ t]

• The law of the exit point is given by

Pνε(Xτε ∈ ΓεDi
) ∝

∫
ΓεDi

∂nνε dσ
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The QSD as an eigenvalue problem

We want to find the QSD νε
−∆νε = λενε in Ωε

∂nνε = 0 on ΓεN

νε = 0 on ΓεD

But thanks to [2]:

It depends on the angle α between ΓεN and ΓεD :

α = π ⇒ νε ̸∈ H
1
2 (Ω)

[2] Jakab, Mitrea and Mitrea, Indiana University Mathematics Journal, (2009)
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Why modifying the domain?

We want to find the QSD νε
−∆νε = λενε in Ωε

∂nνε = 0 on ΓεN

νε = 0 on ΓεD

But thanks to [2]:

It depends on the angle α between ΓεN and ΓεD :

α = π ⇒ νε ̸∈ H
1
2 (Ω) Figure: Level curves of the solution νε near

a flat hole.

[2] Jakab, Mitrea and Mitrea, Indiana University Mathematics Journal, (2009)
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A more regular narrow escape problem

Similar eigenvalue problem:
−∆νε = λενε in Ω̃ε

∂nνε = 0 on ΓεN

νε = 0 on Γ̃εD

(2)

N holes of radius r
(i)
ε centered at x (i) ∈ ∂Ω

Domain Ω̃ε = Ω\∪N
i=1B(x

(i), r
(i)
ε )

New holes: Γ̃εDi
= ∂B(x (i), r

(i)
ε ) ∩ Ω
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A more regular narrow escape problem

Similar eigenvalue problem:
−∆νε = λενε in Ω̃ε

∂nνε = 0 on ΓεN

νε = 0 on Γ̃εD

Previous work: Asymptotic scaling for the disk
and the ball [1]

My PhD work: Asymptotic scaling for general
domains in d ≥ 2 dimensions

[1] Lelièvre, Rachid and Stoltz, preprint (2024)
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How does νε look like?

Figure: Dimension 2: Circle Figure: Dimension 3: Cube
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How to build the quasimode (1 hole)?

From the simulations, u0ε is almost
constant far from the hole:

We can approximate the solution u0ε by a
quasimode (semi-classical technique):

uε0 ≃ φε = 1 + Kεf

with Kε the approximation of the
eigenvalue and f the solution when the hole
is a point:{

−∆f = 1 in Ω

∂nf = 0 on ∂Ω\{x (h)}

with x (h) the center of the hole.
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Construction of the quasimode

By the compatibility equation

|Ω| =
∫
Ω
∆f =

∫
∂Ω

∂nf

But ∂nf = 0 on ∂Ω\{x (h)}, so ∂nf is not a function but a distribution. A part of my PhD
is to have approximation of the singularity of the solution of in the weak W 1,p(Ω) sense:{

−∆f = 1 in Ω

∂nf = −|Ω|δx(h) on ∂Ω

with f ∈
{
u ∈ W 1,p(Ω), ∆u = 1 ∈ Lp(Ω), ∂nu = −|Ω|δx(h) ∈ W− 1

p
,p(Ω)

}
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Construction of the quasimode

Explicit expressions for simple geometries [1], ex: the unit sphere with one hole on x (h)

φε(x) = 1 +
1√
3π

K (h)
ε

[
1

|x − x (h)|
− 1

2
log

(
1− x · x (h) +

∣∣∣x − x (h)
∣∣∣)+

|x |2

4

]

But in the general case, we have been able to do expansions around the singularity only in
the following settings:

• dimension 2, any smooth domain for flat holes

• dimension 2 and above, any C 2 domain, locally smooth, with circular holes

• dimension 3, any smooth domain for slit-like holes

I will focus in the dimension 3 setting with N circular holes
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Properties of the quasimode

Theorem [Quasimode properties]

One can construct a quasimode φε ∈ H1(Ωε) that satisfies:

• An approximate eigenvalue equation: with C3,Ω ∈ R+

∥−∆φε − C3,Ωrεφε∥L2(Ω̃ε)
= O

(
(rε)

2
)

• The Neumann condition:
∂nφε = 0 on ΓεN

• An approximate Dirichlet condition:

∥φε∥L∞(Γ̃εD)
= O

(
rε log (rε)

)
where rε = r

(1)
ε + · · ·+ r

(N)
ε
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From the quasimode to the eigenvalue

With Green identity

λ0
ε =

⟨φε, −∆uε0⟩Ω̃ε

⟨φε, uε0⟩Ω̃ε

=
⟨−∆φε, u

ε
0⟩Ω̃ε

+ ⟨∂nφε, u
ε
0⟩∂Ω̃ε

− ⟨φε, ∂nu
ε
0⟩∂Ω̃ε

⟨φε, uε0⟩Ω̃ε

= C3,Ωrε +O
(
(rε)

2
)
−

⟨φε, ∂nu
ε
0⟩Γ̃εD

⟨φε, uε0⟩Ω̃ε

Since φε = 1 +O
L2(Ω̃ε)

(rε) and φε = O
L∞(Γ̃εD)

(rε log(rε))

⟨φε, ∂nu
ε
0⟩Γ̃εD

⟨φε, uε0⟩Ω̃ε

=
⟨1, ∂nuε0⟩Γ̃εD∫

Ω̃ε
uε0

O(rε log (rε)) = λε
0O(rε log (rε))

Then
λε
0 = C3,Ωrε +O

(
(rε)

2 log (rε)
)
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Results on the exit time

Theorem [Asymptotic of the exit time]

Consider only one hole of radius rε. Then there exists a Cd ,Ω > 0 such that the eigenvalue
λ0
ε scales as:

λ0
ε =

(
E[τε]

)−1
=


Cd ,Ω rd−2

ε +O(rd−1
ε ), for d > 3

C3,Ω rε +O(rε
2 log(rε)), for d = 3

C2,Ω (log(rε))
−1 +O

(
[log(rε)]

−2
)
, for d = 2

Where does the scaling comes from?
The fundamental solution of the laplacian Λ in dimension d :

λ0
ε ∼ Cd ,ΩΛ(rε)

−1 and Cd ,Ω =
max{d − 2, 1}

2

|C (0, 1)|
|Ω|
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Results for N exit holes and d ≥ 2

We define

K i
ε = −Λ(r εi )

−1 =


− 1

log(r εi )
if d = 2

(r εi )
d−2 if d ≥ 3

K ε = K1 + · · ·+ KN

Theorem (Eigenvalue)

The mean exit time when X0 ∼ νε is given by Eνε [τ ] =
1
λε
, where

λε = Cd ,ΩK ε +


O
(
K

2
ε

)
for d = 2

O
(
K

2
ε log

(
K ε

))
for d = 3

O
(
K

d−1
d−2
ε

)
for d ≥ 4
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Exit time for N exit holes and d ≥ 2

Theorem [Exit hole distribution]

The probability to exit through hole i ∈ {1, . . . ,N}is given by:

Pε(Xτ ∈ ΓεDi
) =

K i
ε

Kε

+


O(Kε), for d = 2

O(Kε log(Kε)), for d = 3

O(Kε

1
d−2 ) for d ≥ 4

K i
ε = −Λ(r εi )

−1 =


− 1

log(r εi )
if d = 2

(r εi )
d−2 if d ≥ 3

K ε = K1 + · · ·+ KN
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Exit point for 2 exit holes and d ≥ 2

Theorem [Exit hole distribution]

The probability to exit through hole i ∈ {1, . . . ,N}is given by:

Pνε(Xτ ∈ ΓεDi
) =

K i
ε

Kε

+


O(Kε), for d = 2

O(Kε log(Kε)), for d = 3

O(Kε

1
d−2 ) for d ≥ 4

Example: with N = 2, scaling as r
(1)
ε = ε and r

(2)
ε = 2ε

• in dimension 2, Pνε(Xτ ∈ ΓεD1
) ≈ 1

2
equal to Pνε(Xτ ∈ ΓεD2

)

• in dimension 3, Pνε(Xτ ∈ ΓεD1
) ≈ 1

3
twice smaller than Pνε(Xτ ∈ ΓεD2

)

• in dimension 4, Pνε(Xτ ∈ ΓεD1
) ≈ 1

5
four times smaller than Pνε(Xτ ∈ ΓεD2

)
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Proof of the result on the exit hole distribution (back in dimension 3)

Consider the quasimode φ
(−j)
ε without the hole j , it verifies on ΓεD

φ(−j)
ε = 1ΓεDj

+OL∞(Kε log(Kε))

Then the probability can be writen as

Pνε(Xτ ∈ ΓεDj
) = −

⟨∂nuε0,1ΓεDi
⟩ΓεD

⟨∂nuε0, 1⟩ΓεD
= −

⟨∂nuε0, φ
(−j)
ε ⟩ΓεD

⟨∂nuε0, 1⟩ΓεD
+O(Kε log(Kε))

Using the Green identity,

Pνε(Xτ ∈ ΓεDj
) = −⟨∆uε0, φ

(−j)
ε ⟩Ω − ⟨uε0,∆φ

(−j)
ε ⟩Ω

⟨∂nuε0, 1⟩ΓεD
+O(Kε log(Kε))

=
C3,Ω

λε
0

K j
ε +O(Kε log(Kε))
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Consider the quasimode φ
(−j)
ε without the hole j , it verifies on ΓεD

φ(−j)
ε = 1ΓεDj

+OL∞(Kε log(Kε))

Then the probability can be writen as

Pνε(Xτ ∈ ΓεDj
) = −

⟨∂nuε0,1ΓεDi
⟩ΓεD

⟨∂nuε0, 1⟩ΓεD
= −

⟨∂nuε0, φ
(−j)
ε ⟩ΓεD

⟨∂nuε0, 1⟩ΓεD
+O(Kε log(Kε))

Using the Green identity,

Pνε(Xτ ∈ ΓεDj
) = −⟨∆uε0, φ

(−j)
ε ⟩Ω − ⟨uε0,∆φ

(−j)
ε ⟩Ω

⟨∂nuε0, 1⟩ΓεD
+O(Kε log(Kε))

=
C3,Ω

λε
0

K j
ε +O(Kε log(Kε))
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Measure of the exit time through Finite Element Method (FEM)

The constant Cd ,Ω is given by:

Cd ,Ω =
max{d − 2, 1}

2

|C (0, 1)|
|Ω|

In dimension 3 we find for the simple
shapes through FEM:

Shape C3,Ω C3,Ω (simu)

Sphere radius 1 1.500 1.46± 0.02

Sphere radius 2 0.187 0.18± 0.01

Cube 6.282 6.28± 0.02

Cylinder 8.000 8.06± 0.01
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Monte Carlo simulation of the narrow escape problem

Given X 1
0 , . . . ,X

M
0 , repeat the following steps:

1. Propose move by Euler–Maruyama discretization:

X̂n+1 = Xn +
√
2∆t ξn, ξn ∼ N (0, Id)

2. If X̂n+1 ∈ B(xi , r
ε
i ), register exit event for door i ∈ {1, . . . ,N}. Done

3. Else if X̂n+1 /∈ Ω, reject move (reflecting boundary)

4. Else, set Xn+1 = X̂n+1

This approach is computationally expensive

• Time step should be small compared to (r εi )
2 for i ∈ {1, . . . ,N}

• Mean exit time increases as ε → 0

Example: in dimension 3 with r εi ∝ ε, the mean exit time scales as 1
ε

⇝ Simulation cost of M exit events scales as Mε−3
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Measure of the exit time in high dimension

• Monte Carlo simulation of the exit
time τε for a unit ball in dimension
{2, 3, 4, 5}

• Correct scaling in Kε, but:

Dimension Cball
d Cball

d (simu)

2 2 1.9

3 4.5 4.3

4 16 11

5 32.5 20.8

6 72 34.6
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A more efficient simulation method: walk-on-spheres

When far from the boundary, instead of Euler–Maruyama we use walk-on-spheres
• Compute radius rn = dist(Xn, ∂Ωε).

• Sample the exit point Xn+1 from B(Xn, rn), uniformly on ∂B(Xn, rn)

• Sample exit time ∆tn ∼ Trn , with Trn the law of first exit time from the ball

• Update time: tn+1 = tn +∆tn
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Law of the exit time

Dimension 2 walk on sphere simulations

r (1)ε = ε r (2)ε = ε2

Influence of the time step is huge
→ the small hole is very small
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Conclusion

• The narrow escape is a toy model of
metastability of entropic origin

• With our approach we can solve it for
any (locally) smooth domain in any
dimension

• We get the scaling of the escape time
and the law of exit hole

Future work:

• Study the influence of the hole
geometry on the escape event → the
slit
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