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Metastability of energetic origin

Thermal particle living in a potential well:

Slow dynamics between the wells

P Long time to escape. This is a rare event
n Toy model: Langevin particle in a double-well
/_\ .
potential

How much time does it take to escape the well?
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Metastability of energetic origin

Thermal particle living in a potential well:

Slow dynamics between the wells

P Long time to escape. This is a rare event
n Toy model: Langevin particle in a double-well
/\ .
potential

How much time does it take to escape the well?

Eyring-Kramers’ formula |

The escape time is exponentially distributed, with a
rate rj, with i € {1,2}:

AV;
r; = C;exp <_k _,_)
B

louis.carillo@enpc.fr 3 of 31

v




What if energy is not the driving factor?

A potential made of a confining
well and a few narrow canals:

Still a long time to escape. This is
w3 still a rare event

Is there an equivalent to the
Eyring-Kramers formula in this
case?
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Toy model of the metastability of entropic origin:
Setting:
¢ Domain Q with holes ', and reflecting
) boundary [,
" © A Brownian motion starting at xp taking a
long time to exit 7. = inf{t > 0| X; & Q}

dXe = v2dB, — 1 (Xe)n(X)dLe.




The narrow escape problem

Toy model of the metastability of entropic origin:

Setting:
Domain € with holes I'; and reflecting

. boundary I,

A Brownian motion starting at xg taking a
long time to exit 7. = inf{t > 0| X; & Q}

dX; = V2dB; — 1 (Xe)n(Xe)dLe.
Goal: In the limit of small holes ¢ — 0:

The law of the escape time 7
The law of exit hole X
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References

Motivated by biology: ion channels, receptors on cell membranes, diffusion of a molecule
in a cell...

In the physics literature for Q a disk or a ball:
Introduced by Holcman and Schuss in 2004

A lot of formal results for E[7.] : Bénichou, Voituriez 2008 Cheviakov Kololnikov,
Pierce, Pillay, Straubem, Ward 2010

In the math literature still in simple geometries
Matched Asymptotics by Chen, Friedman 2011
Layer potential techniques by Ammari, Kalimeris, Kang, Lee 2012
Quasi-stationary approach for E[7.] and Law(X;.) by Lelievre, Rachid, Stoltz 2024
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A spectral approach to solve the narrow escape problem

Let p(x, t)be the density of probability to be at y at time t < 7. starting from po
then it verifies the Fokker-Plank equation:

Orp = Ap in Q

Onp=0 on 'y 1)
p=0 onlp
p(+,0) = po in Q

Idea of the proof: Ité's lemma, the local time is continuous with finite variation
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A spectral approach to solve the narrow escape problem
Let p(x, t)be the density of probability to be at y at time t < 7. starting from po
then it verifies the Fokker-Plank equation:
Orp = Ap in Q
Onp=0 on 'y

1
p=0 onlp )
p(+,0) = po in Q
Idea of the proof: Ité's lemma, the local time is continuous with finite variation
The operator L. associated to (1) is self-adjoint with compact resolvent
— there exists an orthonormal basis in H1(Q) of eigenfunctions (u%)x>o and
eigenvalues (AX)k>o ranked in increasing order \2 < A\l < ...
ky —Akt k
,O(X, t) = Z<’OO’ ug >e Etua (X)
k>0
7 of 31
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If the eigengap Al — A is large, then the large time behaviour of p(x, t) is dominated by
the first eigenmode

_\k _ )0
px,t) =Y (po, uf)e < Fub(x) = {po, ul)e *ul(x)
k>0




Large time behaviour

If the eigengap Al — AU is large, then the large time behaviour of p(x, t) is dominated by
the first eigenmode

_)\k Y
p(x,t) = (po, ubYe M (x) & (po, u0)e 2 ul(x)
k>0

From the probability, we deduce the behaviour of quantities of interest:

The exit time distribution is exponentially distributed with parameter \2

The law of the exit hole will be dictated by u?

0

., these results are exact

If we start from pg = u
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Large time behaviour

If the eigengap Al — AU is large, then the large time behaviour of p(x, t) is dominated by
the first eigenmode

_\k _ 1O
p(x,t) = (po. uFhe Xtk (x) & (po, u)e 10 (x)
k>0

From the probability, we deduce the behaviour of quantities of interest:

The exit time distribution is exponentially distributed with parameter \2

The law of the exit hole will be dictated by u?

If we start from pg = ug, these results are exact

= Rigorous approach: the quasi-stationary distribution [1]

[1] Di Gesu, Leligvre, Le Peutrec and Nectoux, Faraday Discussion, (2016)
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If Xo € Q, then t_l:Too Law(X: |t < 72) = ve

Starting from pg = u?, for any x € Q

_)0
p(x, t) = e *tud(x)




Quasi-stationary distribution (QSD)

Definition by the Yaglom limit

If Xo € Q, then t—li—Too Law(X: |t < 72) = e

Starting from pg = u?, for any x € Q
_ )0
p(x, t) = e td(x)

Consequences:
The quasi-stationary distribution is the first eigenmode up to a renormalisation

If po = ve, then p(-, t) = v up to a renormalisation for all t > 0
the quasi-stationary distribution is stationary until the escape event
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Assume that Xg ~ v.. Then
¢ The exit time 7. is exponentially distributed ~ Exp(\§)

P r>s+t]=P, . [r>s+t|r>s|P,[r>5s]
= ]P)VE[T 2 t] ]P)VE [T Z S]




Fundamental properties of the QSD
Assume that Xy ~ .. Then
The exit time 7. is exponentially distributed ~ Exp(Ag)
P [r>s+t|=P, . [r>s+t|7>s]|P, [T >5]
= PV& [T Z t] PV& [T Z S]

The exit point X, is independent of the exit time 7.

P.[Xr. € A 2 t] =P [Xr, € A7 2 t] P [ > 1]
=P [Xr. € APy [7c = 1]
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Fundamental properties of the QSD

Assume that Xy ~ .. Then
The exit time 7. is exponentially distributed ~ Exp(Ag)

P [r>s+t]=P, [r>s+t|T>s]|P, [r>5]
= PV&[T Z t] PV&[T Z S]

The exit point X, is independent of the exit time 7.
P.[Xr. € A 2 t] =P [Xr, € A7 2 t] P [ > 1]

=P, [X. € AP, [ > t]

The law of the exit point is given by

P, (X €Tp,) x Onve do
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The QSD as an eigenvalue problem

We want to find the QSD v,
—Av, = A\.Ue in Q.
O =0 on [y

ve =0 onlp

3

But thanks to [2]:
It depends on the angle o between '}, and ['}:

Oé:7T:>V€€H%(Q)

[2] Jakab, Mitrea and Mitrea, Indiana University Mathematics Journal, (2009)
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Why modifying the domain?

We want to find the QSD v,

—Av. = A\.Ue in Q.
Onve =0 on My
ve =0 onlp
But thanks to [2]:

It depends on the angle o between '}, and ['}:

1
a=71=v. & H2(Q) Level curves of the solution v. near
a flat hole.

[2] Jakab, Mitrea and Mitrea, Indiana University Mathematics Journal, (2009)
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Similar eigenvalue problem:

—Av. = A\.ve in SNZE
Opve =0 on Iy (2)

ve =0 onlpH

N holes of radius r'”centered at x() € HQ

Domain Q. = Q\UlNle(X("), fegi))

. New holes: F‘ED,_ = 0B(x\, ”s(i)) na



A more regular narrow escape problem

Similar eigenvalue problem:

—Av. = v, in §~2€
Opve =0 on Iy
ve =0 on %

Previous work: Asymptotic scaling for the disk
and the ball [1]

My PhD work: Asymptotic scaling for general
domains in d > 2 dimensions

[1] Lelievre, Rachid and Stoltz, preprint (2024)

louis.carillo@enpc.fr 14 of 31



How does v, look like?

o 0113 0225 0338 0451 DE 0676 0789 0902 101 113
N S
QsD
0 00891 0138 0207 0276 0345 0414 0483 0552 0622 0691
L B ]
Dimension 2: Circle Dimension 3: Cube
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How to build the quasimode (1 hole)?

From the simulations, ug is almost
constant far from the hole:

QsD
a 00681 0138 0207 0276 0345 0414 0453 0552 0622 0691
N e

louis.carillo@enpc.fr

We can approximate the solution u? by a
quasimode (semi-classical technique):

ug >~ pe =1+ Kf

with K. the approximation of the

eigenvalue and f the solution when the hole

is a point:

-Af=1 in
Onf =0 on 9Q\{x(N}

with x(" the center of the hole.
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Construction of the quasimode

By the compatibility equation

|Q|:/Af:/ Onf
Q oQ

But d,f = 0 on dQ\{x(MN}, so 9,f is not a function but a distribution. A part of my PhD
is to have approximation of the singularity of the solution of in the weak WP(Q) sense:

-Af =1 in Q
anf = —|Q|5X(h) on 0Q

with f € {u € WHP(Q), Au=1¢€ LP(Q),dpu = —|Qd 0 € W_%’p(Q)}
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Construction of the quasimode

Explicit expressions for simple geometries [1], ex: the unit sphere with one hole on x(h)

1 1 1 |x|?
- (h) 2 e = ] £ X2
pel) =1+ o ke x— x| 2% (1 X +‘X X D+ 4 }

But in the general case, we have been able to do expansions around the singularity only in
the following settings:

dimension 2, any smooth domain for flat holes
dimension 2 and above, any C? domain, locally smooth, with circular holes

dimension 3, any smooth domain for slit-like holes

| will focus in the dimension 3 setting with NV circular holes
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Properties of the quasimode

Theorem [Quasimode properties]

One can construct a quasimode . € H'(€.) that satisfies:

An approximate eigenvalue equation: with Gz o € R

|—Ape — C3,QTE<P€||L2(§E) =0 ((Te)z)

The Neumann condition:
Onpe =0  on T

An approximate Dirichlet condition:
H‘PsHLoo(F%) = O(EIOg (Ts))

where 1z = rg(l) qF 000 oF ra(N)

louis.carillo@enpc.fr
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With Green identity

)\0 _ <()087 —AU8>’§"26 _ <_ASDEa U8>§6 + <an(;087 U8>355 - <S067 8”u8>655
<§067 US)sz (9067 u(E)>§E
<§06a 3nug>‘|=%

<90€a u8>65

=

= G +0((7)) -




From the quasimode to the eigenvalue
With Green identity

(e, _AU(E)>§E _ (=Ap, L’(E)>§E + (Onepe, (E)> — (=5 Onug) 0.

A=

=

<()0€> ”8>g~25 B <80€7 u0>
<€0€7 an“o)rz:)

 CoF =2) _

Since p. =1+ OLQ(()E)(TE) and p. = OLOO(FED)(Elog(rZ))

{Pes 8”U8>F5 (1, a””S)Fe
c = 2 O(7z log (72)) = A5 O(7= log (72
(@e, U8>§E fﬁs ug ( ( )) 0 ( ( ))

louis.carillo@enpc.fr
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From the quasimode to the eigenvalue
With Green identity

(pe, —Aug)g.  (—Ape, Ug)g + (One, UG)an. — (Per Onlif)ag
(bes U)s, (0er U§)a
(e, 5nUo>r%

A=

= Gar+0 (7)) -

Since p. =1+ OLQ(()E)(TE) and p. = OLOO(FED)(Elog(rZ))

{Pes 8”U8>F5 (1, a””S)Fe
c = 2 O(7z log (72)) = A5 O(7= log (72
(@e, U8>§E fﬁs ug ( ( )) 0 ( ( ))

Then
Ao = Gaf: +0 (( ) Iog(rs))
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Results on the exit time

Theorem [Asymptotic of the exit time] |

Consider only one hole of radius r.. Then there exists a Cy o > 0 such that the eigenvalue
A0 scales as:

Caqri™ +0(rd ), for d >3

-1
X =(Br]) =1 Gar +0(r2log(r)),  ford=3
Coq (log(r)) " +0 ([log(r)] ?),  ford =2

Where does the scaling comes from?
The fundamental solution of the laplacian A in dimension d:

-2,1 1
AN~ CooMr)™t and  Cyo= max{d2 : }\%(g| )
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Results for /N exit holes and d > 2

We define

ifd=2

Ki=—N\(rf)™t = log(r7’) K.= K+

(r5)?=2  ifd>3

Theorem (Eigenvalue)

The mean exit time when Xy ~ v, is given by E,_[7] = i where

O(Ri ford =2
Ae = CyaKe + 0(72 og(n)) for d =3
o(?g; ) for d > 4

louis.carillo@enpc.fr
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The probability to exit through hole i € {1,..., N}is given by:

_ O(K-), for d =2
1 _ —

P.(X, €T5) = % + ¢ O(K: log(K:)), ford =3

1
" ok for d > 4
. —% fd=2
Ki=—n() = 8l K. =K+ + K

(r5)d=2  ifd >3



Exit point for 2 exit holes and d > 2

Theorem [Exit hole distribution]
The probability to exit through hole / € {1,..., N}is given by:

' O(K.), for d =2
P, (X, €T5) = Z + { O(K: log(Kz)), ford =3
) O(Kr) for d > 4

Example: with N = 2, scaling as rg(l) — ¢ and r5(2) =2

in dimension 2, P,_(X; € I ) ~ - equal to P, (X; € T5))

in dimension 3, P,_(X: € I'p ) & - twice smaller than P, (X: € ',

Lﬂ\PJLU\PJBJ =

in dimension 4, P,_(X: € Ty ) =~

louis.carillo@enpc.fr
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four times smaller than P,_(X; € T}

)
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Consider the quasimode gog_j) without the hole j, it verifies on I}

90£_J) = ]lreDj + O[_oo(z |Og(z))




Proof of the result on the exit hole distribution (back in dimension 3)

Consider the quasimode ¢£*f) without the hole j, it verifies on I'fy

SDg—j) = ]lrsDj + OLw(Klog(K))
Then the probability can be writen as

(Ontig, s, ) (Ontig, o~ )rs .
P, (X, €T5)=— bl b _ O 0 1 O(K. log(K,
E( Dj) <8nug,1>r% <8nu8’1>r€D ( £ g( E))

louis.carillo@enpc.fr
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Proof of the result on the exit hole distribution (back in dimension 3)
(=)

Consider the quasimode ¢z *’ without the hole j, it verifies on I}
SDg—j) = ]lrsDj + OLw(Klog(K))
Then the probability can be writen as

(On Uo,]lrs )re (8,,u8,<p£_j)>rs _
P, (X, €5) = — — + O(K: log(K
O eto) = o i, Gwm iy, O

Using the Green identity,

( J)>Q o <u8,A(p£7j)>

<8nu8, 1>r%

Ga -
= )\E KJ+O(K log(K:))

.. (X, € Tp) = — 0¥ +O(K: log(K0))
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Measure of the exit time through Finite Element Method (FEM)

The constant Cy q is given by:

————— Sphere r=1

10° :E EEE:E::Z ('r:,. C . max{d - 27 1} |(£(0’ 1)|
el 98- 2 Q]
/,,:«;;::iif::’;f ‘ In dimension 3 we find for the simple
wr e shapes through FEM:

o . ,' Shape Ga | Ga (simu)
Sphere radius 1 | 1.500 | 1.46 + 0.02
T Sphere radius 2 | 0.187 | 0.18 £ 0.01
) T Cube 6.282 | 6.28 +0.02
) Cylinder 8.000 | 8.06 +0.01

Ke

louis.carillo@enpc.fr 26 of 31



Monte Carlo simulation of the narrow escape problem

Given X3,..., XM, repeat the following steps:

Propose move by Euler—-Maruyama discretization:
Xn1 = Xo+ V20L&, & ~N(0,14)

If Xpi1 € B(xi, ré), register exit event for door i € {1,..., N}. Done
Else if Xp41 & €, reject move (reflecting boundary)
Else, set Xp11 = )A(,,H
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Monte Carlo simulation of the narrow escape problem

Given X3,..., XM, repeat the following steps:

Propose move by Euler—-Maruyama discretization:
Xng1 = Xn+ V20L&, &n ~ N(0,14)

If Xpi1 € B(xi, ré), register exit event for door i € {1,..., N}. Done
Else if Xp41 & €, reject move (reflecting boundary)
Else, set Xp11 = )A(,,H

This approach is computationally expensive
Time step should be small compared to (rf)? for i € {1,..., N}

Mean exit time increases as ¢ — 0

1

Example: in dimension 3 with rf o €, the mean exit time scales as <

~ Simulation cost of M exit events scales as Mz 3

louis.carillo@enpc.fr
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Measure of the exit time in high dimension

2D expected 2 | fit: 1.9- x1°
3D expected 4.5 | fit: 4.3-x1°
4D expected 16 | fit: 11.0 - x%°
5D expected 37.5] fit: 20.8 - x%°
6D expected 72 | fit: 34.6 - x%°

Monte Carlo simulation of the exit
time 7. for a unit ball in dimension
{2, 3, 4,5}

Correct scaling in K., but:

Dimension | C2aT | CBal (simu)
2 2 1.9
3 4.5 4.3
4 16 11
5 325 20.8
6 72 34.6

10°
-/
S
A )
10-1 ,’, /‘,
.// ’ /‘/
y”;
,’/ S ,‘/
Il ¢
41 R R R .
,l,
10727
1074 1073 1072
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A more efficient simulation method: walk-on-spheres

When far from the boundary, instead of Euler—Maruyama we use walk-on-spheres
Compute radius r, = dist(X,, 09.).

Sample the exit point Xj1 from B(X,, ry), uniformly on 90B(X,, rn)
Sample exit time At, ~ T;,, with 7, the law of first exit time from the ball

Update time: t,11 = t, + At,

louis.carillo@enpc.fr
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0.35

0.30

0.25

0.20

P(X; €T%)

0.10

0.05

0.00

R TS SIS TLI 11
+F o N T
+ + + +
+ + + +
- + + +
+ +
+
- + +
+ + +
+ + +
+ At=107°
+ + + + At=10"7 |
L 4 n + At=10"%
+ + +  At=1077
+
i¢$iit§iit++++ 4+ At=10710 |
T
102 107 107

£

Dimension 2 walk on sphere simulations
(1) — (2) _ 22
rn=¢ Y =c¢

Influence of the time step is huge
— the small hole is very small



Conclusion

The narrow escape is a toy model of
metastability of entropic origin

With our approach we can solve it for
any (locally) smooth domain in any
dimension

We get the scaling of the escape time
and the law of exit hole

Future work:

Study the influence of the hole
geometry on the escape event — the
slit
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